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Pattern dynamics on curved surfaces are found everywhere in nature. The geometry of surfaces has been
shown to influence dynamics and play a functional role, yet a comprehensive understanding is still elusive.
Here, we report for the first time that a static Turing pattern on a flat surface can propagate on a curved
surface, as opposed to previous studies, where the pattern is presupposed to be static irrespective of the
surface geometry. To understand such significant changes on curved surfaces, we investigate reaction-
diffusion systems on axisymmetric curved surfaces. Numerical and theoretical analyses reveal that both the
symmetries of the surface and pattern participate in the initiation of pattern propagation. This study
provides a novel and generic mechanism of pattern propagation that is caused by surface curvature, as well
as insights into the general role of surface geometry.
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Pattern formation and dynamics on curved surfaces are
ubiquitous, particularly in biological systems [1–3]. Recent
studies reveal the functional roles of the topology and
geometry of surfaces in pattern formation [4–7]. For
example, defect dynamics on closed curved surfaces are
constrained by the Poincaré-Hopf theorem and have been
investigated in liquid crystals [8], flocking [9], and active
nematics [10]. Such defects in cortical actin fibers serve as
organization centers in the morphogenesis of hydra regen-
eration [4]. Molecules such as Bin/Amphiphysin/Rvs
domain proteins sense the curvature of a cellular membrane
and regulate the cellular shape [11]. Cellular migration is
guided by the curvature of a substrate, which is a response
known as “curvotaxis” [5]. It was theoretically shown that
surface curvature can induce splitting [6] and rectification
[12] of excitable waves. Rectification by curved surfaces
has been reported in the collective motion of self-propelled
particles [13]. However, a comprehensive and general
understanding of the effect of surface geometry on pattern
dynamics and its functional role remains elusive.
Among pattern formation, Turing patterns are a promi-

nent example arising from reaction-diffusion systems
[14–17]. Turing patterns on curved surfaces [18–20], such
as spheres [14,21–25], hemispheres [26,27], toruses [25,28],
ellipsoids [28,29], and deformed (but axisymmetric) cylin-
ders and spheres [30] have been investigated previously.
These studies revealed how the Turing instability condition
changes from the flat plane case and how the position of the
pattern is modulated by the inhomogeneity of the surface
curvature [19], which is referred to as “pinning” by Frank
et al. [30]. It is noteworthy that in these studies, the Turing
pattern, which is static on a flat plane, was assumed to
remain static irrespective of the surface geometry. However,
this assumption has not been validated so far [31].

We conductednumerical simulations using theBrusselator
[32] and Lengyel-Epstein (LE) models [33,34] on several
curved surfaces with a parameter set indicating Turing
instability for flat planes (see Supplemental Material [35]
for simulation details).We observed that the static pattern on
a flat surface becomes a propagating pattern on several
curved surfaces (see Fig. 1, and Videos 1 and 2 in the
Supplemental Material [35]), indicating that a surface
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FIG. 1. Propagating and static patterns on surfaces. Concen-
tration u obtained from numerical simulations of the Brusselator
model are indicated by color scale. Lighter (darker) colors
represent higher (lower) concentrations. Parameters are set as
ða; b;Du;DvÞ ¼ ð2.0; 4.5; 0.5; 1.8Þ. (a),(b) Static patterns on
sphere (a) and reflection-symmetric deformed cylinder (b). (c),
(d) Propagating patterns appear on deformed spheres (c) and
deformed cylinders (d). See Videos 1 and 2 [35] for spherical and
cylindrical cases, respectively. Periodic boundary conditions are
used for cylindrical surfaces. Scale bars: six simulation length
units. For deformed cylinders, axial length is 4π. See Supple-
mental Material [35] for detailed descriptions of these surfaces.
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curvature can result in the dynamic motion of patterns,
unlikewhat has been thought thus far. The simulation results
suggest that the surface symmetry contributes to the propa-
gation; for example, the pattern remains static on a reflec-
tion-symmetric cylindrical surface [see Fig. 1(b)], whereas a
moving pattern appears on a cylindrical surface without
reflection symmetry [see Fig. 1(d)]. In addition, propa-
gating waves are observed in both the Brusselator and LE
models, which suggests a generic mechanism underlies this
phenomenon.
To systematically investigate the propagation dynamics

based on the surface curvature, we analyzed a reaction-
diffusion system on an axisymmetric surface parametrized
as r ¼ ½x; rðxÞ cos θ; rðxÞ sin θ�. x and θ are defined as
−2π ≤ x < 2π and 0 ≤ θ < 2π, respectively, for which
periodic boundary conditions are employed. Unless
otherwise mentioned, we set rðxÞ ¼ dþ k1 cosðxÞ þ
k2 cosð2x − γπ=2Þ with d ¼ 1.7, k1 ¼ 0.3, and k2 ¼ 0.05
[see Fig. 2(a)]. γ controls the reflection symmetry of the
surface about x ¼ 0; i.e., rðxÞ ¼ rð−xÞ holds at γ ¼ 0 but
not for γ ≠ 0 [see Fig. 2(b)]. Herein, we focus on the
numerical results obtained using the Brusselator model,

∂tu ¼ DuΔuþ u2v − bu − uþ a;

∂tv ¼ DvΔv − u2vþ bu; ð1Þ

where u and v represent chemical concentrations and are
functions of the position on the surface ðx; θÞ and time t.
On a curved surface, the diffusion terms in Eq. (1) are
described by the Laplace-Beltrami operator Δ [18,37]. For
the axisymmetric surface, Δ is expressed as

Δ• ¼ 1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p ∂x

�
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p ∂x•

�
þ 1

r2
∂2
θ•; ð2Þ

where r0 represents drðxÞ=dx. The surface on a normal
cylinder is equivalent to a flat plane, since they have the
same metric. By choosing the appropriate parameter set, the
system becomes Turing unstable, as indicated by the
dispersion relation μðλÞ and numerical simulations on a
flat plane [see Figs. 2(c) and 2(d)]. The dispersion relation
μðλÞ is obtained via linear stability analysis in the uniform
state ðu; vÞ ¼ ða; b=aÞ and represents the growth rate of a
mode characterized by λ, where λ is an eigenvalue of the
Laplace-Beltrami operator determined by Δϕ ¼ −λϕ (see
Supplemental Material [35]). For flat surfaces, λ coincides
with the square of the wave number. μðλÞ in Fig. 2(c) takes
real positive values between a finite range of λ exhibiting a
typical form of Turing instability. Note that the dispersion
relation μðλÞ, and thus the Turing condition, is the same for
any surface [18].
We performed numerical simulations by varying γ.

When the pattern is helical stripes on a reflection-
symmetric surface, the dynamics become static, as shown
in Fig. 3(a) (γ ¼ 0) and Video 3 [35]. As the reflection

symmetry of the surface is diminished owing to changes
in γ, pattern propagation emerges, as shown in Fig. 3(a)
(γ ¼ 1) and Video 3 [35]. The velocity of the propagation is
plotted against γ in Fig. 3(b) (blue points). The propagation
velocity is proportionally dependent on γ in the vicinity of
γ ¼ 0, indicating that slight reflection asymmetry is suffi-
cient to trigger propagation. Depending on the parameter
and initial conditions, stripes almost parallel along the
x axis can appear [see Fig. 3(c)]. For such a pattern, we do
not observe propagation for any value of γ.
Dotted patterns also appeared via Turing instability [see

Fig. S1(b) in the Supplemental Material [35] ]. On the
axisymmetric surface, we observed dotted patterns that are
aligned helically [Fig. 3(d)] and parallelly along the x axis
[Fig. 3(f)]. The helically aligned dots pattern remains static
on the reflection-symmetric surface at γ ¼ 0 but propagates
at γ ≠ 0 [see Figs. 3(d) and 3(e), and Video 4 in the
Supplemental Material [35] ]. By contrast, the parallelly
aligned dots patterns remain static for any value of γ [see
Fig. 3(f)]. Similar results for the stripe and dotted patterns
are obtained in simulations based on other parameter sets
and in the LE model (see Fig. S2 in the Supplemental
Material [35]), as well as on surfaces with different forms of
rðxÞ [see Figs. 1(b) and 1(d)]. These observations suggest
that the reflection asymmetry of the surface and profile of
the pattern are both responsible for the initiation of pattern
propagation.
To analyze these numerical results, we examined the

observed patterns in terms of symmetry; see the projected
concentration profile of uðx; θÞ at a late-time point t on the
x-θ plane in Figs. 4(a)–4(d). The patterns obtained in the
simulations can be classified into two types (Fig. S3 [35]).
One is referred to as reflection-symmetric patterns about
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FIG. 2. Propagation of stripe patterns on axisymmetric
surfaces. (a), (b) Axisymmetric surface whose radius is rðxÞ ¼
dþ k1 cosðxÞ þ k2 cosð2x − γπ=2Þ. γ represents the parameter
for controlling surface reflection asymmetry along the x axis.
Surfaces at γ ¼ 0 and 1 are shown by dark blue and light red lines
in panel (b), respectively. (c) Dispersion relation with parameter
set ða; b;Du; DvÞ ¼ ð2.0; 4.5; 0.5; 1.8Þ. (d) Turing pattern on flat
plane with parameter set shown in (c).
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the θ axis, where the patterns are exactly invariant by
reflection about the θ axis with an appropriate reflection
axis and translation along the x axis by an integer multiple
of 2π satisfying uðx; θÞ ¼ uðxþ 2nπ;−θ þ θ0Þ with
appropriate values of θ0 and integer n [see Figs. 4(a)
and 4(c)]. Such patterns include the “parallel stripes” and
“parallelly aligned dots” along the x axis mentioned above
[see Figs. 3(c) and 3(f)], and they remain static. The other
patterns include the “helical stripes” and “helically aligned
dots” [see Figs. 3(a) and 3(d)] that appear to be inversion
symmetric about the θ and x axes [see Figs. 4(b) and 4(d)].
However, the inversion symmetry holds exactly only at
γ ¼ 0, where the patterns satisfy uðx; θÞ ¼ uð−xþ 2nπ;
−θ þ θ0Þ with appropriate θ0 and n values. For γ ≠ 0, the
inversion symmetry is merely an approximation. Thus, the
absence of the inversion-symmetric solution is the key to
the emergence of propagation.
Based on the feature of symmetry described above, we

performed a theoretical analysis to clarify the mechanism of
pattern propagation on curved surfaces. A reaction-
diffusion system is generally expressed as

∂tU ¼ DΔU þ RðUÞ; ð3Þ

where U is a vector composed of the chemical concen-
tration, D is a diagonal diffusion matrix, and RðUÞ is a
vector of reaction terms. Using variable ρ≡ θ − ωt, the
propagating solution along the θ axis is expressed as
Uðx; θ; tÞ ¼ Uðx; ρÞ. Subsequently, Eq. (3) for the propa-
gating solution reads

ω∂ρU þDΔU þ RðUÞ ¼ 0: ð4Þ

By taking the inner product with ∂ρU and integrating over
the surface, we obtain

ω ¼ −
R
dS∂ρUTR

R
dSð∂ρUÞ2 ; ð5Þ

where dS≡ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p
dxdρ is a surface area element (see

Supplemental Material [35]). This relationship is consistent
with the simulation data, as shown by the orange lines in
Figs. 3(b) and 3(e). Note that for relaxation systems where
the reaction terms are expressed by the gradient of an
energy function HðUÞ as RðUÞ ¼ −∂HðUÞ=∂U, one can
easily prove that ω ¼ 0 using Eq. (5); this indicates that
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FIG. 3. Propagation of stripe and dotted patterns on axisymmetric surfaces. (a) Helical stripe patterns on reflection-symmetric (γ ¼ 0)
and asymmetric (γ ¼ 1) surfaces (Video 3 [35]). Kymographs of these patterns along the θ axis (indicated by pale red line) are shown.
(b) Angular velocity ω of propagating pattern along the θ axis against surface asymmetry γ. ω is obtained via three different methods:
direct measurement (blue point), velocity relation equation (5) (orange line), and perturbative velocity relation equation (6) (dashed
green line). (c) Parallel stripe patterns along the x axis on reflection-symmetric (left) and asymmetric (right) surfaces. (d)–(f) Date
equivalent to (a)–(c) for helically aligned dots patterns [(d),(e); Video 4 [35] ] and for parallelly aligned dots patterns (f). Parameter sets
of patterns are ða; b;Du; DvÞ ¼ ð2.0; 4.5; 0.5; 1.8Þ (a), (2.8, 5.0, 0.4, 2.4) (c), (1.5, 2.5, 0.3, 3.0) (d), and (1.5, 3.0, 0.5, 3.5) (f) (see also
Fig. S1 in the Supplemental Material [35]).
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propagation is realizable only in out-of-equilibrium
systems.
Equation (5) relates propagation velocity to the pattern

profile and surface geometry. Considering a pattern with
reflection symmetry about the θ axis [a pattern satisfying
Uðx; ρÞ ¼ Uðxþ 2nπ;−ρþ ρ0Þ with appropriate n and
ρ0], RðUÞ satisfies the same symmetry. Subsequently,
owing to the parity of ∂ρU and RðUÞ, the integral in the
numerator of the equation vanishes, and accordingly,ω ¼ 0
for such a pattern. This applies similarly to the case for a
helical inversion-symmetric pattern at γ ¼ 0, which sat-
isfies Uðx; ρÞ ¼ Uð−xþ 2nπ;−ρþ ρ0Þ. These arguments
prove the absence of propagation in parallel stripes and
parallelly aligned dots patterns along the x axis for any
value of γ, as well as in helical patterns at γ ¼ 0. By
contrast, for a helical pattern with γ ≠ 0, these symmetries
do not hold, and in general, ω is finite, as shown below.
To investigate the mechanism by which propagation

occurs due to the breaking of reflection symmetry of the
surface geometry, we performed a perturbation analysis by
setting the radius of the axisymmetric surface to rðxÞ ¼
r0ðxÞ þ ϵr1ðxÞ (see Supplemental Material [35] for details
regarding the perturbation analysis). An even function
r0ðxÞ represents the reflection-symmetric part of the sur-
face, whereas an odd function r1ðxÞ represents the asym-
metric part. For a small ϵ, the Laplace-Beltrami operator is
expanded to Δ ¼ Δ0 þ ϵΔ̄1 þOðϵ2Þ, where Δ0 is the
operator for reflection-symmetric surfaces, and ϵΔ̄1 repre-
sents modulation via asymmetric deformation. Δ0 and Δ̄1

exhibit the opposite parity for reflection about the x axis;

i.e., they change as Δ0 → Δ0 and Δ̄1 → −Δ̄1, respectively,
for a transformation x → −x. At ϵ ¼ 0, we assume that the
system shows a helical pattern U0 satisfying inversion
symmetry U0ðx; ρÞ ¼ U0ð−xþ 2nπ;−ρþ ρ0Þ, for which
the velocity vanishes as discussed above. The effect of
asymmetric surface deformation on the pattern propagation
dynamics is evaluated as follows:

ω ¼ −ϵ
R
dS0WT

0DΔ̄1U0R
dS0WT

0∂ρU0

þOðϵ2Þ; ð6Þ

where dS0 ≡ r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r020

p
dxdρ and function vector W0 are

determined by the system at ϵ ¼ 0. Owing to the parity of
Δ̄1, Eq. (6) does not vanish in general, indicating that the
loss of reflection symmetry of the surface about the x axis
causes the propagation of the Turing pattern. We numeri-
cally verified the relationship above based on our simu-
lation data by setting r0ðxÞ ¼ dþ k1 cosðxÞ þ k2 cosð2xÞ,
r1ðxÞ ¼ ðπk2=2Þ sinð2xÞ, and ϵ ¼ γ, and discovered good
agreement in the vicinity of ϵ ¼ 0 [Figs. 3(b) and 3(e),
dashed green lines]. Taken together, these analyses cor-
roborate the emergence of Turing patterns propagating on
curved surfaces.
It is noteworthy that the analyses above do not exclude a

moving Turing pattern on a highly symmetric surface if the
pattern is out of symmetry. In our numerical simulations,
we observed a stripe pattern propagating on a spherical
surface in some cases, where the pattern does not satisfy the
symmetry expected from the surface (see Fig. S4 in the
Supplemental Material [35]).
In summary, we discovered chemical waves that propa-

gated genuinely driven by surface curvature. This propa-
gation does not occur in one-dimensional systems, where
no intrinsic curvature exists, which contrasts with typical
propagating waves such as those in excitable media, where
the initiation of wave propagation is independent of the
surface geometry. By performing numerical simulations
and perturbative analysis, we identified the generic con-
ditions for pattern propagation irrespective of the model
equations for axisymmetric surfaces, where loss of surface
reflection symmetry along the x axis results in a loss of
pattern inversion symmetry and propagation along the θ
axis. The (a)symmetry of the surface and pattern are both
important, suggesting that in general surfaces, pattern
dynamics is determined by the geometric feature of the
surface and pattern profile. The pattern propagation dis-
covered in this Letter was overlooked previously, likely
because most of those previous studies focused primarily
on highly symmetric surfaces. In addition, the propagation
velocity is generally much slower than that of pattern
formation at the early stage; for example, in Fig. S4 of
the Supplemental Material [35], images are shown every
1.0 × 104 simulation time units (STU), whereas the devel-
opment of the pattern is shorter than 1.0 × 103 STU
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FIG. 4. Relationship between pattern symmetry and pattern
propagation. (a)–(d) (First and second columns) patterns on
surface and projected images on the x-θ planes, respectively. γ
is set to 1.0. (Third column) patterns obtained by reflecting
original patterns along the θ axis. (Fourth column) patterns
obtained by inverting the original patterns. For ease of compari-
son, the images in the third and fourth columns are translated
along the x and θ axes such that the surface is invariant (i.e.,
x → xþ 2nπ and θ → θ þ θ0). (a) Parallel stripes along the x
axis; (b) helical stripes; (c) parallelly aligned dots along the x
axis; (d) helically aligned dots.
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[see also very early stages t < 103 of the simulations shown
in kymographs of Figs. 3(a) and 3(d)].
Our findings imply the new roles of surface geometry for

pattern dynamics applicable to natural and engineering
systems. For example, geometry-dependent information
transduction is possible in a growing organ, where defor-
mation of the surface can cause initiation (or suppression)
of wave propagation, which can subsequently result in the
feedback regulation of organ growth. Similar regulation
between pattern and surface geometry is possible in the
molecular localization on the cell membrane, either inside
or outside the surface. In the future, our study should
be extended to general curved surfaces and network sys-
tems [38], including deformable surfaces [37,39,40].
Furthermore, it would be interesting to investigate similar
phenomena in systems other than reaction-diffusion sys-
tems, such as active matter systems with polar and nematic
orders.
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