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Giant atoms that interact with real-space waveguides at multiple spatial points have attracted extensive
attention due to their unique interference effects. Here we propose a feasible scheme for constructing giant
atoms in a synthetic frequency dimension with, e.g., a dynamically modulated superconducting resonator
and a tailored three-level artificial atom. Both analytical and numerical calculations show good agreement
between our scheme and real-space two-level giant atoms. In particular, the symmetry of the model in
momentum space can be broken by tuning the phase of the external field applied on the atom, enabling
chiral interactions between the atom and the frequency lattice. We further demonstrate the possibility of
simulating cascaded interaction and directional excitation transfer in the frequency dimension by directly
extending our model to involve more such effective giant atoms.

DOI: 10.1103/PhysRevLett.128.223602

Introduction.—Giant atoms, which interact with the
surrounding environment (waveguides) at multiple points,
have attracted rapidly growing interest in the past few years
due to various intriguing phenomena arising from them [1].
In general, giant atoms can be achieved by coupling
(artificial) atoms to propagating fields whose wavelengths
aremuch smaller than the atomic sizes (e.g., surface acoustic
waves) [2–10], or by coupling atoms to meandering wave-
guides at separated points [11–13]. For such structures, one
should naturally consider phase accumulations of photons
between different atom-waveguide coupling points, which
lead to a series of striking phenomena that are absent for
small atoms, such as frequency-dependent Lamb shifts and
relaxation rates [11], decoherence-free interaction between
atoms through the waveguide [12,14–16], and photon
storage based on bound states [17–19], to name a few.
On the other hand, the concept of synthetic dimensions

has been recently proposed and extensively explored
in a variety of physical systems such as photonic structures
[20–26], cold atoms [27–30], and superconducting circuits
[31–35]. With synthetic dimensions, it is possible to
explore richer physical effects with fewer geometric
dimensions. A simple way to create a synthetic dimension
is to actively couple modes at different frequencies via
dynamical modulations [20–25,34,35]. One can also create
synthetic dimensions based on other internal degrees of
freedom of photons such as momentum [36,37] and orbital
angular momentum [38–40]. The construction of synthetic
dimensions not only enables significant reduction of
physical resources, but also provides possibilities for
manipulating the relevant degrees of freedom [22].

In this Letter, we demonstrate how to implement giant
atoms in a synthetic frequency dimension, where the one-
dimensional (1D) frequency lattice acting as a discrete
waveguide is achieved with a dynamically modulated
superconducting resonator [33–35]. We consider a Δ-type
artificial atom, where two of the transitions are coupled to
different sites of the frequency lattice and the third one is
driven by an external field. If the atom supports both a
single-photon resonant transition and a two-photon one
with large detuning, it can be effectively described as a two-
level giant atom with two coupling points in the frequency
dimension. We reveal that the effective model can not only
simulate some typical effects of real-space giant atoms such
as long-lived populations, but can also be used to manipu-
late light frequency and achieve chiral quantum optical
effects in the frequency dimension.
Model.—As shown in Fig. 1(a), we consider a multimode

superconducting transmission line resonator that is con-
nected at one end to a superconducting quantum interference
device (SQUID) [33–35,41–44]. The frequencies of the
resonant modes are nearly equally spaced within a specific
band [33]. Bymodulating the SQUID at a frequency near the
free spectral range of this band, coherent couplings between
adjacent resonant modes can be introduced and thus a tight-
binding frequency lattice is created. The Hamiltonian of the
frequency lattice in the interaction picture can be written as
(see Sec. I of the Supplemental Material [45] for more
details; ℏ ¼ 1 throughout this Letter) [33–35]

Hr ¼
X
m

Jða†mamþ1 þ H:c:Þ; ð1Þ
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where am (a†m) is the annihilation (creation) operator
of the mth resonant mode with frequency ωm (m ¼ 0;�1;
�2;…); J is the nearest-neighbor coupling strength that is
related to the Josephson energy of the SQUID; H.c. denotes
the Hermitian conjugate. In Eq. (1), we have assumed that
the modulation frequency is resonant with the free spec-
tral range.
Moreover, we consider a Δ-type artificial atom with

ground state jgi, middle state jfi, and excited state jei.
Such a structure can be readily achieved with supercon-
ducting qubit circuits operated away from the optimal
points [51–53], but is not allowed with electric-dipole
transitions of natural atoms due to selection rules [54]. We
select jgi as the reference so that the energies of jfi and jei
are denoted by ωf and ωe, respectively. The transitions
jgi ↔ jei and jgi ↔ jfi are coupled to resonant modes a0
and aN (N < 0 if ωf < ωe), respectively, while the tran-
sition jfi ↔ jei is driven by a coherent external field of
amplitude (frequency) η (ωd). In the interaction picture and
with the rotating-wave approximation, the total
Hamiltonian of the system can be written as (see Sec. II
of Ref. [45])

H ¼ ðg0a†0jgihejeiΔ1t þ gNa
†
N jgihfjeiΔ2t

þ ηeiθjeihfjeiΔdt þ H:c:Þ þHr; ð2Þ

where g0 (gN) is the coupling strength between mode a0
(aN) and the transition jgi ↔ jei (jgi ↔ jfi), and is
assumed to be real for simplicity; θ is the phase of the
external field and determines the global phase of the closed-
loop level structure [51]; Δ1 ¼ ω0 − ωe (Δ2 ¼ ωN − ωf) is

the detuning between mode a0 (aN) and the transition
jgi ↔ jei (jgi ↔ jfi); Δd ¼ ωe − ωf − ωd is the detuning
between the transition jfi ↔ jei and the external field. In
the case of Δ1 ¼ 0 and Δ2 ¼ Δd ¼ Δ ≠ 0, where a single-
photon and a two-photon resonant transition coexist,
Eq. (2) is equivalent to the time-independent Hamiltonian

H0 ¼ Hr − Δjfihfj þ ðg0a†0jgihej
þ gNa

†
N jgihfj þ ηeiθjeihfj þ H:c:Þ: ð3Þ

The state of the system in the single-excitation subspace
can be written as

jψðtÞi ¼
�X

m

umðtÞa†m þ
X
β¼f;e

uβðtÞjβihgj
�
j0; gi; ð4Þ

with which one can solve the Schrödinger equation and
obtain

i _ue ¼ −iγue þ g0u0 þ ηeiθuf;

i _uf ¼ −iγuf − Δuf þ ηe−iθue þ gNuN;

i _um ¼ Jðumþ1 þ um−1Þ þ g0ueδm;0 þ gNufδm;N; ð5Þ

where um (uβ) is the probability amplitude of creating a
photon in the mth resonant mode (of the atom in the state
jβi); γ describes the intrinsic dissipation of the atom
(assumed to be identical for jei and jfi), which can be
much smaller than the other interaction strengths for
superconducting qubits [12]. Note that the excitation
number operator Ne ¼

P
m a†mam þP

β jβihβj commutes
with the Hamiltonian in Eq. (3), implying that the total
excitation number of our model is conserved.
Giant-atom effects.—When Δ ≫ fg0; gN; ηg, jfi can be

adiabatically eliminated if it is initially unpopulated [55–
57]. If we further assume γ ≪ fg0; gN; ηg, Eq. (5) can be
approximately simplified to

i _ue ¼ ðΔe;e − iγÞue þ g0u0 þ ge;NeiθuN;

i _um ¼ Jðumþ1 þ um−1Þ þ ðg0ueδm;0

þ ðge;Ne−iθue þ Δe;NuNÞδm;N; ð6Þ

where Δe;e ≈ η2=Δ and Δe;N ≈ g2N=Δ are the effective
frequency shifts of jei and aN , respectively; ge;N ≈
gNη=Δ is the effective coupling strength between mode
aN and the transition jgi ↔ jei due to the two-photon
process. If θ ¼ 0 and fΔe;e;Δe;Ng → 0, Eq. (6) is similar to
the dynamic equations of a two-level giant atom coupled to
a real-space 1D lattice at two separated sites [58], which
reads

(a)

(b) (c)

FIG. 1. (a) Schematic illustration of the model under consid-
eration. The SQUID coupled to the superconducting resonator is
modulated in time. A Δ-type artificial atom interacts with two
resonant modes of the resonator and is driven by an external field.
(b) Effective two-level giant atom after adiabatic elimination.
(c) Ladder-type implementation scheme of the effective giant
atom.
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i _we ¼ −iγwe þ λ0w0 þ λNwN;

i _wm ¼ Jðwmþ1 þ wm−1Þ þ weðλ0δm;0 þ λNδm;NÞ: ð7Þ

Here wm and we are the probability amplitudes of exciting
themth site of the lattice and the atom, respectively; λ0 (λN)
is the atom-lattice coupling strength at the 0th (Nth) site. In
view of this, our model is equivalent to a two-level giant
atom in the frequency dimension, as shown in Fig. 1(b). For
superconducting qubits, g0 ≪ gN is allowed such that the
coupling strengths g0 and ge;N of the effective giant atom
can be identical [53]. It is challenging, however, to simulate
such an effective giant atom with a cyclic three-level natural
atom (see Sec. I of Ref. [45] for more details).
Before proceeding, we point out that the effective giant

atom in the frequency dimension can also be implemented
with a ladder-type three-level atom, which is coupled to
different sites of the frequency lattice via multiple two-
photon resonant transitions, as shown in Fig. 1(c). The
feasibility and advantages of such a scheme are discussed
in detail in Sec. III of Ref. [45]. Considering the schemes of
creating synthetic dimensions based on optical resonators
[20–23], this also shows the possibility of constructing
effective giant atoms in the optical regime.
We first verify the validity of the effective giant atom in

the case of θ ¼ 0 by numerically solving Eq. (5) with
appropriate parameters and comparing the results with
those of the real-space correspondence [obtained with
Eq. (7)]. In practice, the frequency dimension typically
extends over a limited number of resonant modes where the
free spectral range is nearly constant. Therefore we con-
sider 30 modes (lattice sites) in total [35] and assume that
jNj is much smaller than the lattice length to avoid the
boundary effect. Figure 2(a) shows the evolutions of the
atomic populations PeðtÞ ¼ jueðtÞj2 and P0

eðtÞ ¼ jweðtÞj2
with the initial state jψðt ¼ 0Þi ¼ j0; ei and different
values of N in the ideal case of γ ¼ 0. Clearly, the results
of the two models can be well fitted if λ0 ¼ g0
and λN ¼ ge;N . In particular, long-lived population can
be observed if N ¼ −2 and g0 ¼ ge;N , similar to a
decoherence-free giant atom in real space [11,58].
Physically, this arises from the destructive interference
between the two atom-waveguide coupling paths. Although
the two paths correspond to different frequencies, hopping
along the frequency lattice causes frequency conversion of
the wave such that the giant-atom interference effect can
still take place. Moreover, it shows that the decay rate of
PeðtÞ depends on N, which reproduces the phase-
dependent spontaneous emission of a real-space giant
atom. The population evolutions for γ ≠ 0 are demon-
strated in Fig. 2(b), which exhibits somewhat accelerated
atomic decay. Hereafter, we will always take the intrinsic
dissipation of the atom into account.
We also plot in Fig. 2(b) the evolutions of PeðtÞ and

P0
eðtÞ with another initial state jψðt ¼ 0Þi ¼ a†−1j0; gi,

which again show good agreement between these two
models. While the atom can hardly be excited if N ¼ −4,
an oscillating atomic population arises in the case of
N ¼ −2. This can be understood again from the two-path
interference effect. For N ¼ −4, the phase accumulations
of the photon traveling from its initial position (i.e.,
site a−1) to the atom via the two coupling points are ϕ1 ¼
−π=2 and ϕ2 ¼ −3π=2 [58], respectively, such that the two
excitation paths of the atom interfere destructively. For
N ¼ −2, however, ϕ1 ¼ ϕ2 ¼ −π=2 leads to constructive
interference between the two paths. Because of the weak
atom-waveguide couplings, only a portion of the excitation
can oscillate between mode a−1 and the excited state jei
and the oscillation tends to vanish eventually. We also
provide in Sec. IV of the Supplemental Material [45] an
effective model of “giant-small atoms” [59], where the
initially occupied lattice site is effectively replaced
by a vacuum one coupled with an excited small atom, to
give a more intuitive and quantitative explanation for the
result above.
Chiral quantum optics in the frequency dimension.—Up

to now, we have considered the case θ ¼ 0, which
simulates in the frequency dimension a conventional
two-level giant atom. Now we turn to consider the case
θ ≠ 0, which can be readily achieved by tuning the phase of
the coherent external field. In this case, the Hamiltonian (3)
becomes asymmetric in momentum space such that the
spontaneous emission of the giant atom should be chiral
[60]. In particular, the giant atom exhibits almost unidi-
rectional emission when θ ¼ π=2 and N ¼ −3, as shown
by the modal excitation probability PmðtÞ ¼ jamðtÞj2 in
Fig. 3(a). This phenomenon can be understood from the
effective Hamiltonian of Eq. (6), which reads

FIG. 2. Dynamic evolutions of PeðtÞ and P0
eðtÞ with different

values of N and initial states. We assume γ ¼ 0 in (a) and γ ¼
0.01J in (b) and (c). Other parameters are g0 ¼ 0.1J, gN ¼ 3J,
η ¼ 2J, θ ¼ 0, λ0 ¼ λN ¼ 0.1J, and Δ ¼ 60J.
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H̃ ¼ Hr þ ½jgihejðg0a†0 þ ge;Na
†
Ne

−iθÞ þ H:c:� ð8Þ

if fΔe;e;Δe;N; γg → 0. By performing the transformation
ak ¼

P
m am expð−ikmÞ= ffiffiffiffiffiffi

2π
p

, Eq. (8) becomes

H̃0 ¼
Z

dkωka
†
kak þ

1ffiffiffiffiffiffi
2π

p
Z

dk½ðg0
þ ge;Ne−iðkNþθÞÞjgiheja†k þ H:c:� ð9Þ

with ωk ¼ 2J cos k the dispersion relation of the lattice.
Equation (9) shows a standard atom-field interaction but
with an engineered momentum-dependent coupling.
Clearly, the phase θ renders the coupling asymmetric in
k and thus mimics a synthetic gauge field threading the
plaquette spanned by the atom-waveguide couplings. The
gauge field allows the interaction to imprint a momentum
kick on photons propagating toward left or right, similar to
the Aharonov-Bohm (AB) effect. Once again, this result
can be quantitatively understood from the model of giant-
small atoms [45], where the excitation of the giant atom
cannot be transferred to a small atom on its left side if
θ ¼ π=2 and N ¼ −3. We point out that the weak excita-
tions of the left-side sites in Fig. 3(a) arise from the finite-
size effect of the lattice. As shown in Fig. S2 of Ref. [45],
the chiral profile tends to become more ideal with the
increase of the lattice size.

On the other hand, such a giant atom can hardly be
excited by photons coming from the right side, as shown in
Fig. 3(b). This thus provides the possibility of realizing
cascaded interactions [61–63] in the frequency dimension,
with which the excitation of the present giant atom can be
transferred to another such one but not vice versa. As an
example, we assume that another giant atom (labeled as
atom B) is coupled to the frequency lattice at sites m ¼ 1
and m ¼ 4, while the present one (labeled as atom A) is
coupled to the lattice at sites m ¼ −3 and m ¼ 0. Other
parameters such as the effective coupling strengths are
assumed to be identical for the two atoms. We plot in
Figs. 3(c) and 3(d) the evolutions of the atomic populations
Pe;AðtÞ of atom A and Pe;BðtÞ of atom B when different
atoms are initially excited. As expected, in the case of
θ ¼ π=2, the excitation of atom A can be partially trans-
ferred to atom B, whereas atom A is always nearly in the
ground state if atom B is initially excited.
Based on the chiral mechanism above, we now demon-

strate that the effective giant atom can be used as a photonic
AB cage [64] that enables directional excitation transfer
along the frequency dimension. As shown in Fig. 4(a), we
consider an array of such Δ-type atoms (2Qþ 1 atoms in
total), each of which couples to two nearest-neighbor
lattice sites with strengths g1 and g2, respectively, to
form a “sawtooth lattice” in the frequency dimension.

FIG. 3. (a) and (b) Dynamic evolutions of (a) PmðtÞ with
initial state jψðt ¼ 0Þi ¼ j0; ei and (b) Pe with different initial
states. The lower panel in (a) depicts the modal excitation
profile at Jt ¼ 5. (c) and (d) Dynamic evolutions of atomic
populations Pe;AðtÞ and Pe;BðtÞ of two separate effective
giant atoms with initial states (c) jψðt ¼ 0Þi ¼ j0; e; gi and
(d) jψðt ¼ 0Þi ¼ j0; g; ei. We assume g0 ¼ 0.1J, gN ¼ 3J,
η ¼ 2J, and Δ ¼ 60J in (a) and (b) and assume g0 ¼ 0.4J,
gN ¼ 10J, η ¼ 4J, and Δ ¼ 100J in (c) and (d). Other param-
eters are N ¼ −3, θ ¼ π=2, and γ ¼ 0.01J.

(a)

(b) (c)

(d) (e)

FIG. 4. (a) Schematic illustration of the effective sawtooth
lattice. (b) and (d) Dynamic evolutions of PmðtÞ in the sawtooth
lattice with (b) θ ¼ π=2 and (d) η ¼ 0. (c) and (e) Modal
excitation profiles Pm at specific moments with different para-
meters. Other parameters are Q ¼ 4, g1 ¼ J, g2 ¼ 10J, η ¼ 6J,
γ ¼ 2J, Δ ¼ 60J, θ ¼ π=2, and jψðt ¼ 0Þi ¼ a†0jGi unless
indicated.
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The effective sawtooth lattice is assumed to be homo-
genous, with the Hamiltonian Hs ¼ Hr þHa þHint
given by

Ha ¼
XQ
m¼−Q

½−iγjeimhej − ðΔþ iγÞjfimhfj�;

Hint ¼
XQ
m¼−Q

½g1jgimheja†mþ1 þ g2jgimhfja†m

þ ηeiθjeimhfj þ H:c:�; ð10Þ

where the subscript m also labels the atom array. When
θ ¼ π=2, as shown in Fig. 4(b), the initial excitation
jψðt ¼ 0Þi ¼ a†0jGi (jGi is the ground state of the whole
system) exhibits a nearly directional transfer as expected.
The transfer direction and velocity can be controlled by
tuning the phase θ [see, e.g., themodal profiles in Fig. 4(c)].
This is reminiscent of the real-space non-Hermitian saw-
tooth lattice [65,66], where only the excitation components
with specific wave vectors can propagate along the lattice
without loss due to the combination of theAB effect and the
non-Hermiticity. We stress that the intrinsic atomic dis-
sipation plays a key role for observing the directional
transfer (see Sec. V of Ref. [45] for more details).
Moreover, as shown in Figs. 4(d) and 4(e), the excitation
transfer becomes nearly symmetric if the external fields are
turned off (η ¼ 0) or in the absence of the atoms
(g1 ¼ g2 ¼ 0). Owing to the atomic dissipation, however,
the modal excitation probability in the former case is
typically smaller than that of the latter one.
Conclusions.—In summary, we propose in this Letter a

feasible scheme for constructing giant atoms in a synthetic
frequency dimension. Compared with real-space giant
atoms, our scheme has several advantages: (i) While
real-space giant atoms typically require large-scale wave-
guides or coupled-resonator arrays, our scheme provides a
hardware-efficient platform for exploring and simulating
giant-atom effects. (ii) Our scheme suggests the possibility
of simulating higher-dimensional giant atoms [67] in
systems with lower geometric dimensionality, which are
easier to construct experimentally. (iii) The present scheme
opens up new venues for manipulating the frequency of
light and achieving chiral quantum optical effects in the
frequency dimension. The scheme in this Letter can also be
extended to involve other synthetic dimensions [40], with
which one can manipulate more degrees of freedom of
photons and phonons.
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