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The two-fluid model is fundamental for the description of superfluidity. In the nearly incompressible liquid
regime, it successfully describes first and second sound, corresponding, respectively, to density and entropy
waves, in both liquid helium and unitary Fermi gases. Here, we study the two sounds in the opposite regime
of a highly compressible fluid, using an ultracold 39K Bose gas in a three-dimensional box trap. We excite the
longest-wavelength mode of our homogeneous gas, and observe two distinct resonant oscillations below the
critical temperature, of which only one persists above it. In a microscopic mode-structure analysis, we find
agreement with the hydrodynamic theory, where first and second sound involve density oscillations
dominated by, respectively, thermal and condensed atoms. Varying the interaction strength, we explore the
crossover from hydrodynamic to collisionless behavior in a normal gas.
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One of the hallmarks of superfluidity is the existence of
two distinct sound modes with the same wavelength,
corresponding to two different sound speeds. This remark-
able property is the key prediction of the hydrodynamic two-
fluid model, which was conceptualized by Tisza [1] and
London [2], and established by Landau using quantum
hydrodynamics [3,4]. In this model, the two fluids are the
superfluid and the normal component of a system below its
critical temperature Tc. Originally inspired by superfluid
4He, Landau’s theory successfully predicts properties of this
strongly interacting, essentially incompressible fluid. More
recently, two sound modes have been observed in ultracold
atomic Fermi gases near unitarity [5–7], which are also
nearly incompressible.
Ultracold Bose gases provide a versatile platform to test

the same general framework for highly compressible super-
fluids, including the hybridization of the two modes [8]
[see Fig. 1(a)]. However, a challenge in these systems is
reaching hydrodynamic conditions for the normal fluid,
which requires the collisional mean free path lmfp to be
significantly shorter than the excitation wavelength. In
harmonically trapped gases, following first studies of colli-
sionless excitations [9–11], a pioneering study [12] revealed
the analogs of first and second sound in two collective modes
with frequencies between the hydrodynamic and collision-
less predictions. Further studies have explored the effects of
interactions on the first sound above Tc [13,14] and on the
second sound and related thermodynamics below it [15–17].
Recently, simultaneous observation of first and second sound
has been used to characterize the superfluid transition in two
dimensions (2D) [18].
Here, we realize the compressible-fluid regime of the two-

fluid model in the textbook setting of a 3D homogeneous

Bose gas, using tuneable interactions between 39K atoms to
attain hydrodynamic conditions. Below Tc, we observe both
first and second sound, with speeds in agreement with
Landau’s theory. Using momentum-resolved measurements,
which give access to the motion of the spatially overlapping
superfluid and normal components, we reveal the structure
of the two sound modes. For gases above Tc, where only the
first sound remains, we also investigate the effects of viscous
damping by reducing the interaction strength and crossing
from the hydrodynamic to the collisionless regime.
In the hydrodynamic two-fluid model, the superfluid

and normal components are characterized by their densities

(a) (b)

FIG. 1. First and second sound in dilute Bose gases. (a) Mode
structure and speeds of sound in a weakly interacting Bose gas
based on the two-fluid model. Both modes involve motion of both
fluids (vs, vn), but for kBT ≫ gns, where g is the interaction
strength and the first (second) sound is mainly an oscillation of
the normal (superfluid) component. (b) In a box-trapped gas of
39K atoms, we excite the kL ¼ π=L mode of both sounds by
sinusoidal forcing using a magnetic gradient ∇B. To attain
hydrodynamic conditions, we reduce the mean free path lmfp

below the box length L by tuning g.
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(ns, nn) and velocities (vs, vn). In the nearly incompressible
liquid helium, the first sound is an in-phase oscillation of the
two coupled components, while the second sound is an out-
of-phase oscillation that corresponds to a pure temperature or
entropy per particle wave δs̃ ∝ vn − vs. On the other hand,
in a strongly compressible gas the two components largely
decouple. As illustrated in Fig. 1(a), in this regime the first
and second sound, respectively, are predominantly vn and vs
modes [8,19].
Generally (see the Supplemental Material [20] for details),

one can write an eigenvalue equation [3,34] for the sound
speed c in the basis of total density n ¼ nn þ ns and entropy
per particle s̃:
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where K2 ≡ ð1 − cV=cPÞ [35], J ≡ −ðn=s̃Þ½ð∂s̃Þ=ð∂nÞ�T;V ,
and b2 ≡ nTs̃2=ðmcVÞ, with heat capacities cV;P per volume
V, temperature T, and atom mass m. For an incompressible
gas, K → 0 and J ∼ 1 for any T < Tc, so the two modes are
oscillations of n and s̃ [8]. In the opposite, ideal-gas limit
[37], K; J → 1, the n and s̃ modes maximally hybridize;
here the eigenmodes correspond to motion of either the
normal or the superfluid component. In general, the cross-
over between the two regimes is primarily controlled by the
value of K, which can vary between zero and one.
In a weakly interacting Bose gas, where thermodynamic

quantities can be calculated from first principles, K
changes smoothly from zero to almost one as the temper-
ature is varied from zero to Tc [8]. Here we explore the

compressible regime, kBT ≫ gn, where g ¼ 4πℏ2a=m and
a is the s-wave scattering length. In Hartree–Fock mean-
field theory, K ¼ 1 − gn2=½2χðzÞnnkBT� and the sound
speeds are [20,38]

cðHFÞI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðzÞ kBT

m
þ 2

gnn
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where χðzÞ ¼ 5g5=2ðzÞ=½3g3=2ðzÞ�, gαðzÞ are polylogar-
ithms, and z ¼ eμ

�=ðkBTÞ is evaluated using μ� ¼ −gns below
Tc [39]. While cðHFÞII depends strongly on interactions, cðHFÞI
is to leading order set by just the temperature.
Our experiments start with a partially condensed Bose gas

of 39K atoms in the lowest hyperfine state, confined in a
cylindrical box trap [40–42] of length L ¼ 70ð2Þ μm and
radius R ¼ 9.2ð5Þ μm. To create hydrodynamic conditions
we tune a to a relatively high 480(20) a0 using the magnetic
Feshbach resonance at 402.7 G [43]. This enhances three-
body losses and heating, but within 200 ms the gas reaches a
trap-depth–limited T ¼ 97ð3Þ nK (see the Supplemental
Material [20]), at which point the atom number is
N ¼ 105ð3Þ × 103, corresponding to T=Tc¼0.77ð3Þ [44],
lmfp ¼ ð8πna2Þ−1 ¼ 0.15ð1ÞL, K ¼ 0.75ð5Þ, J ¼ 1.20ð4Þ,
and b ¼ 3.2ð2Þ mms−1.
After tuning a, we start weakly exciting the lowest sound

mode(s), with wave vector kL ¼ π=L, using a spatially
uniform force of magnitude F ¼ F0 sinðωtÞ, with
F0L=kB ¼ 7.7 nK [45], generated by an axial magnetic
gradient [46]. After a variable time t, we turn off both F and
the trap, and measure the axial 1D momentum distribution

FIG. 2. Observation of first and second sound. (a) Center-of-mass velocity v versus shaking time t at several frequencies ω=ð2πÞ
reaching quasisteady state after 200 ms. (b) jσðωÞj2, where jσðωÞj is proportional to the amplitude of the total current NvðtÞ. The two
peaks correspond to the two sound modes. We show spectra for different N at approximately constant T ¼ 97ð3Þ nK (measured at
t ¼ 200 ms). The solid lines are fits using the sum of two resonances [20]. The diamonds correspond to the data shown in (a). (c) First
(red) and second (blue) sound speeds, normalized by the Bogoliubov speed c0ðNÞ, versus T=Tc. The diamonds correspond to data
shown in (b). The solid lines are the fit-free predictions of the two-fluid model [Eq. (2)] at fixed T ¼ 97 nK and varying N, with ns
calculated using Popov mean-field theory. Near Tc mean-field theory is not valid, which we represent by fading of the lines. The dotted
lines show cI of a noninteracting gas and cII calculated by equating ns with condensate density nBEC, and calculating nBEC in the ideal-
gas approximation.
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nkðtÞ using a time-of-flight expansion of 30–45 ms. The
cloud’s center-of-mass (COM) velocity vðtÞ ¼ ℏhki=m,
shown in Fig. 2(a) for various ω, gives the current density
due to both components, j ¼ nv ¼ nsvs þ nnvn. This
provides a model-free description of the system response,
which we characterize in (quasi-) steady state (t≳ 200 ms)
using the analog of a complex optical (nonzero-frequency)
conductivity σ ∝ j=F [47].
In Fig. 2(b) (top curve) we plot the full spectrum jσðωÞj2

at T=Tc ¼ 0.77, which reveals two well-resolved peaks
corresponding to the two sound modes. In our homogeneous
system, the resonance frequencies ωI and ωII directly give
the speeds cI;II ¼ ωI;II=kL. To study sound modes at higher
T=Tc, we lowerN at approximately fixed T [20].We see that
the response at ωII weakens and vanishes, while the response
at ωI persists [lower curves of Fig. 2(b)].
In Fig. 2(c) we summarize our measurements of cI;II for

various T=Tc below and above 1. Here, we normalize the
speeds by the Bogoliubov speed c0 ¼ ½gN=ðπR2LmÞ�1=2.
We find good agreement with the predictions of Eq. (2)
without any free parameters (solid lines), with ns calculated
within the mean-field Popov approximation [20]. For
reference, we also show the ideal-gas prediction for cI
[48] and the prediction for cII assuming that ns ¼ nBEC, and
calculating nBEC in the ideal-gas approximation.

We next explore the k-space structure of the two sound
modes, focusing on our T=Tc ¼ 0.77 dataset, for which the
superfluid fraction is 43(3)%. Figures 3(a) and 3(d) show
the time evolution of the axial nk distribution for shaking
near the second- and first-sound resonance (at 14 and 40 Hz
respectively); for details of the experimental procedure see
the Supplemental Material [20]. In both cases the motion of
the low-k superfluid component is visually more clear, and
it is more pronounced for the second sound.
We quantitatively analyze these data in two ways. First, in

Figs. 3(b) and 3(e), we simply look at the phase ϕ of the
occupation-number oscillation at each k, fitting a sinusoid to
nkðtÞ − n−kðtÞ and defining ϕ relative to the drive [20]. For
second sound, ϕ wraps from 0 to π with increasing k. On the
other hand, for first sound, ϕ is close to zero for all k.
Second, we disentangle the motion of normal and superfluid
components, which both contribute at low k. We deduce
vnðtÞ by looking only at high k (>1.7 μm−1), assuming that
the hydrodynamic motion of the normal component corre-
sponds to a simple displacement of its whole momentum
distribution, and then calculate vsðtÞ from vnðtÞ, the total
current, and the superfluid fraction [20]. These results are
shown in Figs. 3(c) and 3(f). Note that vs at the first-sound
resonance (40 Hz) could be slightly affected by the prox-
imity to the second-sound resonance for k ¼ 3kL.

FIG. 3. Microscopic structure of the two sound modes. Here T=Tc ¼ 0.77ð3Þ, corresponding to a superfluid fraction of 43(3)%.
(a) Evolution of nk on the second-sound resonance at 14 Hz [see Fig. 2(b)]. The motion of the superfluid at low k is visually clear, and
from the wings of the distribution one can also extract the normal-gas velocity vn. (b) k-resolved phase ϕ (with respect to the phase of
the drive) of the nkðtÞ oscillations. Here the low- and high-k oscillations are almost completely out of phase, as predicted for second
sound. (c) Extracted vn (orange) and vs (green); vs is larger and in phase with the drive (see phasor in the inset) as expected for a
compressible superfluid. (d)–(f) Analogous analysis to (a)–(c), now for the first-sound resonance at 40 Hz; here ϕ is close to 0 for all k
and vn is larger than vs.
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These observations demonstrate all the key features of the
two-fluid theory for a highly compressible gas. Additional
information is contained in the damping of the modes, seen
in their nonzero widths [see Fig. 2(b)]; zero hydrodynamic
damping would require the collision rate to be infinite, to
ensure instantaneous local equilibration, which is not the
case even in gases with infinite scattering length [49–51].
For the second sound we deduce an amplitude-damping

coefficient γII ¼ 2π × 2.7ð4Þ Hz, with no clear N depend-
ence. This is compatible with the Landau–Khalatnikov
hydrodynamic prediction [20,52,53] γII ≈ 2π × 2.2 Hz. It
also coincides with the Landau-damping prediction [54]
3πakLkBT=ð8ℏÞ ¼ 2π × 2.7ð2Þ Hz, but this is likely fortu-
itous since that theory assumes a collisionless normal
component. Note that in the experiment additional broad-
ening may arise due to nonlinear effects [55] and the
temporal variation of the gas density caused by losses; in
the future it would be interesting to study the damping of the
second sound further.

For the first sound, we systematically explore the cross-
over from the hydrodynamic to the collisionless regime in
gases above Tc, where hydrodynamic behavior relies
entirely on scattering. The parameter separating the two
regimes is the Knudsen number, which in our case is given
by lmfp=L.
We prepare gases at T ≈ 1.3Tc and vary lmfp=L both by

tuning a and using two different box lengths (50 μm and
70 μm). We initiate a COM velocity oscillation by shaking
at 55 Hz with F0 ¼ kB × 0.55 nK μm−1, then stop the drive
and observe decaying free oscillations [see Fig. 4(a)]. We
extract the sound speed cI and damping γI by fitting vðtÞ
with the harmonic-oscillator form v ∝ cosðωItþ ϕÞe−γIt,
with ωI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcIkLÞ2 − γ2I

p
. We normalize cI by its predic-

tion in the hydrodynamic limit cðHFÞI [Eq. (2)], and γI by the
angular frequency cIkL.
Theoretically, to linear order in lmfp=L, the sound speed

retains its hydrodynamic value, but the nonzero heat
conductivity κ and viscosity η result in a nonzero γI.
The predicted damping, or equivalently the diffusivity
DI ¼ 2γI=k2, is given by the Stokes–Kirchhoff relation
DSK ¼ ½4η=ð3mnÞ þ κðc−1V − c−1P Þ� [56], ignoring the bulk
viscosity ζ in our monatomic gas. In kinetic gas theory
η=ðmnÞ ∼ κ=cP ∼ lmfpcI. For a weakly interacting gas,

cI ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
, so DI ∼ ðlmfp=λTÞðℏ=mÞ, where λT is the

thermal wavelength, and one can write γI=ðcIkÞ ¼ rklmfp,
where the dimensionless r depends on the degeneracy; for
our T=Tc we get r ≈ 0.44 [20,57]. This theory, without free
parameters, is shown in Figs. 4(b) and 4(c) as the dashed
line, and it agrees with our data for L=lmfp ≳ 3.
For L=lmfp < 3 the measured cI decreases, while γI

keeps growing albeit less than predicted. Using the classical
sound equations, we calculate the effects of η and κ on cI
and γI beyond linear order (see solid lines in Figs. 4(b) and
4(c), and the Supplemental Material [20,58] for details).
The higher-order effects depend on the Prandtl number, Pr,
which measures the relative weights of momentum and
thermal diffusivities. For our system Pr ≈ 2=3 [20,57], and
the prediction is for cI to decrease, in agreement with our
data. The predicted damping is also reduced, but not
significantly.
In the collisionless regime L=lmfp → 0, where the hydro-

dynamic theory does not apply, the measured damping is
finite and the oscillations are still well described by an
exponential damping. Note that, unlike for the shape
oscillations in harmonic traps [8,14], a nonzero damping
is expected even at a ¼ 0 due to the dispersion of momen-
tum modes.
Finally, we note the distinction between cI and the phase

velocity ω=k. While cI is a material property, the effect of
viscous damping on ω=k depends on the boundary con-
ditions; for our fixed-wavelength case ω=k decreases with
damping, whereas it increases in the fixed-frequency
case [20,58].

FIG. 4. From collisionless dynamics to hydrodynamic sound in a
normal gas. (a) For scattering lengths from a ¼ 10 a0 to 1000 a0,
we measure the COM velocity v for a free oscillation after shaking
the cloud for 3 (gray circles) and 3.25 (brown circles) periods at
55 Hz. (b) Measured speed of sound cI normalized to the speed

cðHFÞI predicted for dissipationless hydrodynamics. (c) Damping
per period. In both (b) and (c), the data for L ¼ 70 μm (purple
squares) coalesce with the data taken using an additional box
geometry (L ¼ 50 μm, red circles), when plotted against the
inverse Knudsen number L=lmfp ∼ na2=kL. The dashed lines
show theoretical predictions to linear order in lmfp=L, while the
solid lines show the results of the full hydrodynamic calculation
(see text and the Supplemental Material [20]). The latter captures
the observed drop of the normalized sound speed below unity. The
relative damping also agrees with this fit-free theory at
L=lmfp > 3, while for L=lmfp → 0 it decreases but remains
nonzero (see enlargement in the inset).
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In conclusion, we observed both first and second sound in
a 3D ultracold Bose gas that is sufficiently strongly
interacting to be hydrodynamic, but is still highly compress-
ible. We found that Landau’s two-fluid theory captures all
the essential features of this system, with the first and second
sound mode, respectively, predominantly featuring oscilla-
tions of the normal and the superfluid component. By tuning
interactions, we also studied the breakdown of hydrodyna-
micity. The experimental access to both microscopic and
hydrodynamic properties offers an excellent opportunity for
further studies of Bose fluids. In particular, it would be
interesting to explore lower temperatures (kBT ≈ gns) where
an avoided crossing of the two sound modes is expected [8].
Below this crossing the incompressible limit is approached
and the Bogoliubov mode becomes the first sound, while the
nature of the second mode is still a subject of theoretical
investigation [59].

The supporting data for this Letter are openly available
from [60].
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