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We use lithium-6 atoms in an optical tweezer array to realize an eight-site Fermi-Hubbard chain near half
filling. We achieve single site detection by combining the tweezer array with a quantum gas microscope. By
reducing disorder in the energy offsets to less than the tunneling energy, we observe Mott insulators with
strong antiferromagnetic correlations. The measured spin correlations allow us to put an upper bound on
the entropy of 0.26ð4ÞkB per atom, comparable to the lowest entropies achieved with optical lattices.
Additionally, we establish the flexibility of the tweezer platform by initializing atoms on one tweezer and
observing tunneling dynamics across the array for uniform and staggered 1D geometries.
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Arrays of neutral atoms in optical tweezers have
emerged as a powerful new platform for quantum simu-
lation and computation [1–3]. It is now possible to study
interacting quantum systems in defect-free tweezer arrays
with hundreds of atoms [4,5]. Initial work with reconfig-
urable tweezer arrays used alkali atoms, and the platform
has now expanded to include alkaline earth atoms [6–8]
and molecules [9,10]. Notable results include studies of
quantum spin models using atoms excited to Rydberg
states [11,12], demonstration of high fidelity quantum
gates [13,14], and high quality factor atomic clocks [15].
Most of the activity with tweezer arrays has focused on
atoms localized on individual tweezers. The versatility of
tweezer arrays provides a strong incentive for extending
quantum simulations with this platform to systems of
mobile atoms where the effects of quantum statistics
become important. A key step in this direction has been
the demonstration of tunnel-coupled double-well tweezer
systems [16,17].
The use of tweezer arrays to study itinerant condensed

matter models such as the Hubbard model realizes a
“bottom-up” paradigm of quantum simulation, in contrast
to the more established “top-down” approach of using
optical lattices [18]. Optical lattices are an efficient way to
create periodic trapping potentials with thousands of
lattices sites that can be loaded directly from a degenerate
gas. In recent years, quantum gas microscopes have been
used to probe optical lattices with single-site resolution,
allowing for extraction of multipoint correlation functions.
In particular, fermionic quantum gas microscopes have
been used to explore the phase diagram of the square lattice
Fermi-Hubbard model, a minimal model for high temper-
ature superconductivity [19]. Quantum gas microscopes
have allowed for direct measurement of the Mott insulator
state [20,21], antiferromagnetic correlations at half filling
[22–25], and the motion of a single hole in an antiferro-
magnetic background [26–28].

Studying Fermi-Hubbard models with optical lattices
faces two challenges that motivate the consideration of
tweezer arrays as an alternative platform. First, the lowest
entropies that have been achieved for correlated states in
optical lattices are in the range of 0.3–0.5kB per particle
[29–31]. This has hindered access to interesting regimes of
the square Hubbard model phase diagram such as the
pseudogap or the putative d-wave superconductor [32].
Sophisticated entropy redistribution schemes have been
investigated, but were limited by the ability to precisely
control lattice potentials at the single-site level [33]. A
second challenge, particularly relevant for microscope
experiments, is the difficulty of reconfiguring the apparatus
to study different lattice geometries. Programmable Fermi-
Hubbard tweezer arrays have the potential to address both
of these issues by allowing precise dynamical control of the
simulated model at the single site level. This includes the
geometry of the array, energy offsets on individual tweez-
ers, and the tunneling matrix element on each bond. Going
beyond square Hubbard models will enable microscopic
studies of qualitatively different phenomena including flat
bands, Dirac points, and quantum spin liquids.
The requirements for observing coherent tunneling

between two tweezers are the ability to prepare atoms in
the motional ground state and to control the energy offset
between the tweezers to better than the tunneling energy,
which is normally less than a percent of the total depth. In
Ref. [17], a two-site Fermi-Hubbard model was realized by
loading a pair of tweezers with atoms from a degenerate
Fermi gas, with subsequent work measuring correlations
and entanglement in coupled two- and three-site systems
[34,35]. These experiments have been limited in expanding
to large arrays due to the difficulty of in situ imaging of 6Li
in optical tweezers [36]. In this Letter, we combine a
tweezer array with a quantum gas microscope to study a
programmable eight-site Hubbard chain, an increase in the
size of the Hilbert space by over three orders of magnitude.
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We implement the Fermi-Hubbard model with two
hyperfine spin states of 6Li loaded in a one-dimensional
tweezer array. By loading the ground state of four inde-
pendent tweezers with high fidelity, we adiabatically trans-
form a low-entropy band insulator into a correlated state by
ramping on four additional tunnel-coupled tweezers to
change the filling of the system. This scheme is similar
to proposed adiabatic preparation that allows for single site
control of the ramping procedure [37,38]. Near the end of
the ramp, the system is well described by the single-band
Hamiltonian

ĤFH ¼ −
X

hi;ji;σ
tijðĉ†iσ ĉjσ þ H:c:Þ þU

X

i

n̂i↑n̂i↓ þ
X

i;σ

Δin̂iσ;

ð1Þ

where ĉ†iσ is the fermionic creation operator of spin σ at site
i, and n̂iσ is the number operator. Here, the local tunneling
matrix element tij, energy offset Δi, and on-site interaction
U can be controlled in real time. By carefully controlling
the Hubbard parameters, we prepare low entropy states
with antiferromagnetic correlations, showcasing the ability
of the tweezer platform to generate “clean” many-body
systems.
We generate the tweezer array with 770 nm light using an

acousto-optical modulator (AOM), such that different
tweezers are generated by radio-frequency tones of differ-
ent frequencies [Fig. 1(a)]. We implement elliptic tweezers
with a waist of ≈930 nm at the atoms as measured along
the direction of the tweezer array and a waist of ≈1250 nm
in the perpendicular direction. We work with two different

configurations of the tweezers that we switch between
during an experimental cycle: the loading configuration
with independent tweezers and the science configuration
with tunnel-coupled tweezers at half the separation of the
loading configuration. In the science configuration, adja-
cent tweezers differ in radio-frequency tone by 4 MHz,
corresponding to a lattice spacing of 1350 nm. We load the
initial configuration of four tweezers from an attractively
interacting degenerate gas that is an equal mixture of the
lowest and third lowest hyperfine ground states of 6Li
prepared in an optical dipole trap. The initial temperature of
the gas is ≈0.2 times the Fermi temperature, which does not
limit the final entropy of the tweezer array [39]. After
allowing the system to equilibrate, the optical dipole trap is
slowly turned off and the magnetic field is ramped to a
noninteracting value.
Initially, there are tens of atoms of each spin state

occupying the lowest energy levels of each trap. To remove
atoms in higher energy levels, we apply a magnetic gradient
while lowering the depth of each trap to spill out all
atoms except for one atom in each spin state in the ground
state, a technique pioneered in Ref. [39]. Accounting for
imaging fidelity, each spin state is loaded with a fidelity
hn↑i ¼ hn↓i ¼ 0.975ð9Þ [40]. We bias the spilling pro-
cedure such that almost all of the errors in preparation result
in one atom per tweezer and we avoid preparing any atoms
in excited motional states. After spilling, we quickly ramp
on the additional tweezers needed for the science configu-
ration to ∼95% of the depth of the loading tweezers,
corresponding to an energy offsetΔ0 in Fig. 1(b). In the last
stage of the experimental sequence, we slowly decrease the
tweezer energy offsets to zero in 50 ms as the scattering
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FIG. 1. Experimental setup. (a) The tweezer array is generated by an AOM and is projected through an objective. Correlated states of
the Hubbard model are prepared in the array and the atoms are subsequently loaded from the tweezers into a two-dimensional optical
lattice in the x–y plane for imaging [22]. Light scattered during Raman cooling in the 2D lattice is captured through the same objective.
(b) Experimental protocol. First, we load the ground state of well-separated tweezers with two atoms in different spin states using a
spilling procedure with a magnetic gradient. Next, additional tweezers ramp on to an energy offset Δ0 where there is no tunneling.
Finally, the energy offset between neighboring tweezers is reduced to zero to adiabatically prepare an antiferromagnetic state.
(c) Experimental sequence. To initialize the Fermi-Hubbard array, the energy offset is decreased to zero while the scattering length is
increased to its final value af , reaching the desired U=t.
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length of the atoms is ramped to its final value by increasing
the magnetic field [see Figs. 1(b) and 1(c)]. Before imaging
the resulting correlated state, tunneling is frozen in the
array by offsetting the tweezers back to Δ0 in 100 μs and
increasing the overall depth by a factor of 3. We use the
PYTHON package QuSpin to simulate the ramping procedure
for comparison to the experiment [41].
Because of its light mass, lithium is a challenging species

to image in optical tweezers. Therefore, to detect the atoms
with single-site resolution, we transfer them from the
tweezer array into a two-dimensional square optical lattice.
The lattice has a 752 nm spacing, which allows us to
superresolve the array. At a depth of 2500 ER, the lattice
has much larger radial trapping frequencies than the
tweezers, which allows us to reach the Lamb-Dicke regime
for effective Raman sideband cooling during fluorescence
imaging [22]. Using this scheme, we detect atoms with
98.5(4)% fidelity.
For typical tunneling energies of h × 200 Hz and

tweezer depths of h × 50 kHz, where h is Planck’s con-
stant, we need to balance the intensities of the tweezers to
better than 0.5% of the depth to be in the regime where
disorder is comparable to or less than the tunneling. This
requirement is more stringent than for experiments with
Rydberg atoms, which typically only need to equalize the
tweezer depths to within a few percent [2,15]. We start by
coarsely balancing tweezer intensities on a camera. Fine
balancing of tweezer depths in the science configuration is
achieved by feeding back on the average density profile of
the atoms at U=t ∼ 1, typically taking ∼500 experimental
cycles [40].
In the offset-balanced science configuration array, the

atoms realize the Fermi-Hubbard model with disorder less
than the tunneling. As the loading fidelity of the band
insulator in the loading configuration is not perfect, the
system is on average slightly below half filling. After the
ramp to the science configuration, the highest hni≡ p is
0.955(7), indicating some atom loss during the ramp.
To verify that we can prepare correlated states in the

science configuration, we look for Mott insulators at large
repulsive interactions, where it is energetically favorable
for atoms to be on singly occupied sites. To image singly
occupied sites, we first convert atoms on doubly occupied
tweezers into Feshbach molecules to ensure loss before
loading into the optical lattice [40]. We measure the fraction
of singly occupied sites in the Mott insulator as a function
of interaction energy (Fig. 2). For this measurement,
t=h ¼ 160ð4Þ Hz, and the scattering length is tuned from
0 to 1600 bohr radii (a0). At a scattering length of 1600a0,
we measure U=h ¼ 1.07ð4Þ kHz, giving a maximum U=t
of 6.7(3). Using exact diagonalization methods, we extract
the expected singles occupation for different densities, and
find that the singles occupation we measure at different
interactions is consistent with the density hni ¼ 0.93ð2Þ of
this dataset.

Although the suppression of doublons conclusively
demonstrates the formation of a correlated state, measure-
ments of the density alone are insufficient to characterize
the system at low temperatures. At these temperatures, the
atoms preferentially arrange themselves in an antiferro-
magnetic configuration because of the superexchange
interaction. By removing atoms in one spin state with
resonant light and imaging the other state (the lowest
hyperfine state, j ↑i), we measure up-up density correla-
tions between sites i and j as Cij ¼ 4ðhni↑nj↑i −
hni↑ihnj↑iÞ at the largest U=t ¼ 6.7ð3Þ (Fig. 3). Because
of the strong quantum fluctuations, spin correlations in the
one-dimensional Fermi-Hubbard model decay over a few
sites even in the ground state. For analysis of the corre-
lations, we post-select on imaging four j ↑i atoms, which
lowers the effective temperature and increases the filling
[40]. We simulate the system using the grand canonical
ensemble, defined by chemical potential μ and temperature
T, as the atom number in our experiment fluctuates due to
imperfect loading [42]. Using a least squares fit on the
average atom number and each individual spin correlation,
we find a local minimum of temperature at kBT ¼ 0.21ð3Þt,
where the error bar is extracted using bootstrapping
methods. However, many of the correlators do not have
a strong dependence on temperature, and some are non-
monotonic with temperature [40]. Around 10% of boot-
strapped samples fit to a temperature much closer to zero
than the rest of the samples. These temperatures are even
lower than the temperature expected from numerically
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FIG. 2. Singles density as a function of U=t. We compare the
experimental data to the calculated singles density at three
different total densities. The measured density hni ¼ 0.93ð2Þ
of this dataset is caused by imperfect loading. The inset is a
fluorescence image of an eight atom Mott insulator with
reconstruction masks (shown as white dotted lines) to identify
which tweezer the atom originated from.
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evolving the initial loading configuration. This suggests
that spin correlations cease to be a good thermometer at the
lowest temperatures we achieve and the fitted temperature
is an upper bound.
A more natural quantity to discuss when characterizing

closed cold atom systems is the entropy. In the loading
configuration, after postselecting on detecting four spin up
atoms, the initial entropy is 0.09ð1ÞkB per particle, calcu-
lated from

S
hNi ¼ −

kB
1þ p

½p logpþ ð1 − pÞ logð1 − pÞ�: ð2Þ

To extract the final entropy after the ramp, we compute the
entropy from the fitted grand canonical parameters,
obtaining an upper bound on the entropy per particle of
0.26ð4ÞkB. This entropy is comparable to the lowest
entropies measured in optical lattices with fermionic
quantum gas microscopes [29–31]. To understand where
the entropy gain in the system is coming from, we simulate
the ramping procedure and find an expected final entropy
of 0.18ð2ÞkB per particle, which is a lower bound on the

entropy of the system [40]. The dominant source of entropy
gain stems from imperfect initial states with a single
localized hole, which is an energetically excited state that
cannot adiabatically evolve into the ground state of the
homogeneous eight-site system. By implementing full spin
and density readout in future experiments [43], the entropy
of the initial state can be eliminated via postselection. In
that case, numerics indicate that nonadiabaticity during the
ramp would limit the entropy to 0.04kB per particle.
Not only can the tweezer platform prepare highly

correlated low-entropy equilibrium states, but it can also
realize dynamics that are difficult to study in comparable
optical lattice systems. To demonstrate the flexibility of the
platform, we perform experiments where we prepare
atoms only on an edge site of the science configuration
and observe the propagation of the particles in the array
[Fig. 4(a)]. To initialize dynamics, we decrease the offset
from Δ0 to zero in 100 μs. In a noninteracting system this
experiment is a direct measurement of the tunneling of the
array. By comparing our measurements to exact calcula-
tions of the tunneling dynamics, we conclude that the
tweezers are balanced to within half a tunneling energy.
One other advantage of the tweezer array platform is the

ability to easily realize arbitrary lattice geometries. In our
one-dimensional system, we explore this by creating a
lattice with staggered tunneling. To accomplish this, the
radio-frequency tone difference between every other
tweezer is changed to 4.2 MHz, with the edge pairs having
a spacing of 4 MHz. This leads to a science configuration
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where the tunneling is modulated on alternate bonds and
hence, qualitatively different behavior than the uniform
tunneling array. We study tunneling dynamics in this
staggered lattice by initializing atoms on the edge site
[Fig. 4(b)]. There is good qualitative agreement with
simulations, with two ballistically propagating tunneling
trajectories forming before the atoms reach the opposite
side of the chain. However, since dynamical experiments
are intrinsically more sensitive to disorder than studying
ground states, deviations of the data from the simulations
are more significant.
In conclusion, we have shown that optical tweezer arrays

can be used to prepare many-body states of lattice fermions.
The key advantages over optical lattices are increased
flexibility in engineering Hubbard models on arbitrary
geometry lattices and, with full postselection on the atom
number and spin, the possibility of reaching very low
entropy states limited only by adiabaticity of the prepara-
tion. This platform is particularly well suited to studying
ground states of many-body systems at high U=t and at
half-filling, where residual disorder plays a negligible role.
It is feasible to extend our system to arrays of up to a
hundred tweezers as has been demonstrated by the Rydberg
atom array community [4,5], especially since the tweezer
balancing algorithm runtime is approximately independent
of the number of tweezers. To scale the tweezer array to two
dimensions, we plan to use two crossed acousto-optic
deflectors, with the second dimension introduced by
stroboscopically switching between chains created using
the approach described in this Letter. This will allow
studying 2D Hubbard models with arbitrary software-
defined geometry and microscopic measurements of cor-
relations in phases yet to be explored with quantum gas
microscopes, including quantum spin liquids in triangular
or hexagonal geometries and flat-band ferromagnets in
Lieb lattices.
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