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We describe and analyze algorithms for classically simulating measurement of an n-qubit quantum state
in the standard basis, that is, sampling a bit string from the probability distribution determined by the Born
rule. Our algorithms reduce the sampling task to computing poly(n) amplitudes of n-qubit states; unlike
previously known techniques they do not require computation of marginal probabilities. Two classes of
quantum states are considered: output states of polynomial-size quantum circuits, and ground states of local
Hamiltonians with an inverse polynomial spectral gap. We show that our algorithms can significantly
accelerate quantum circuit simulations based on tensor network contraction or low-rank stabilizer
decompositions. As another striking consequence we obtain the first efficient classical simulation
algorithm for measurement-based quantum computation with the surface code resource state on any
planar graph and any schedule of measurements.
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There is strong evidence that quantum circuits cannot be
simulated efficiently using a classical computer. Likewise,
physical properties of locally interacting quantum many-
body systems are unlikely to be classically accessible in the
general case. Nevertheless, classical simulation techniques
are widely used in quantum computation and condensed
matter physics. To some extent this is out of necessity, as a
means to go beyond the limits of pen-and-paper calcu-
lation. But it is also facilitated by the fact that mathema-
ticians, computer scientists, and physicists have identified
certain remarkable quantum systems where efficient
classical simulation is possible. These include the family
of Clifford circuits (simulable using the stabilizer formal-
ism [1]), systems that are equivalent to noninteracting
fermionic particles including matchgate circuits [2,3] and
the 2D Ising model [4–6] (via fermionic linear optics [7]),
gapped 1D quantum many-body systems [8,9] or shallow
quantum circuits in a 1D geometry [10] (tensor network
methods [11–13]), and ferromagnetic spin systems [14–16]
(Markov chain Monte Carlo methods). Such examples are
rare and insightful; each provides a glimpse of a facet of the
quantum-classical boundary and informs our understanding
of hard-to-simulate quantum resources. Perhaps more
importantly, the above algorithmic techniques can often
be extended to more general settings with an increased
computational cost. For example, the classical simulation
algorithms based on low-rank stabilizer decompositions
[17–19] have a runtime that scales exponentially only in the
number of non-Clifford gates in a quantum circuit. Tensor-
network based simulation methods for quantum circuits
[13] have a runtime that scales exponentially only in the

treewidth of a graph which describes the connectivity of the
circuit. A large body of recent work (see, e.g., Refs. [20–
26]) has focused on optimizing practical implementations
of tensor network methods for the benchmark task of
sampling from the output distribution of random quantum
circuits, in response to the quantum experiment [27]. We
expect classical simulation will continue to be a key
technique for validation and verification of near-term
quantum devices, and in the study of quantum many-body
systems.
In this Letter we provide new techniques for a funda-

mental and ubiquitous task: simulating measurement of a
quantum state ψ in the standard basis. Throughout we shall
assume ψ is a normalized n-qubit quantum state and so our
goal is to sample from the output distribution jhxjψij2,
where x ∈ f0; 1gn.
It is well known that this task can be performed given

the ability to compute any marginal probability of the
form

πjðyÞ≡ hψ jðjyihyj ⊗ In−jÞjψi y ∈ f0; 1gj: ð1Þ

The standard qubit-by-qubit sampling algorithm uses
the chain rule for conditional probabilities to simulate
measurement of each qubit j ¼ 1; 2;…; n in sequence.
It samples each measurement outcome xj ∈ f0; 1g for
j ¼ 1; 2;…; n from its conditional distribution given the
values of all previously sampled bits. This qubit-by-qubit
algorithm—stated formally as Algorithm 1 below—is the
usual way to reduce the task of weak simulation (our
sampling task) to strong simulation (computing a given
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probability or marginal). It is applicable in a wide variety of
contexts as it works for any quantum state ψ . It has been
deployed in countless works.
The runtime of the qubit-by-qubit algorithm is deter-

mined by the cost of computing the marginal probabilities
π1ðx1Þ; π2ðx1x2Þ;…; πnðx1x2…xnÞ. In particular, the total
runtime is at most n times the maximum runtime of
computing a marginal of the form Eq. (1). The latter
runtime may vary widely depending on the method used,
and whether or not the state ψ has special structure that can
be exploited. In the cases we consider in this Letter (see
below), computing marginals is hard in the worst case. It is
expected that any algorithm for this task has runtime
scaling exponentially with n.
Here we describe alternatives to the qubit-by-qubit

algorithm, for two important families of quantum states
ψ : output states of polynomial-size quantum circuits and
unique ground states of local Hamiltonians with inverse
polynomial spectral gap. In other words we give alternative
efficient reductions from weak to strong simulation for
these families of states. Our reductions differ from the
qubit-by-qubit algorithm in that they do not require
computation of marginal probabilities. Instead, our algo-
rithms make a polynomial number of calls to a subroutine
that computes amplitudes of n-qubit states. We describe
settings in which our new reductions provide vast improve-
ments in total runtime for the task of simulating
measurement.
Simulation of quantum circuits.—Consider the task of

sampling a bit string from the output distribution of a
quantum circuit U with m gates such that each gate is a
unitary operator acting nontrivially on at most k qubits. We
show how to reduce the sampling task to the one of
computing amplitudes of subcircuits of U spanned by
the first t gates where t ¼ 1; 2;…; m. The total number of
amplitudes that one needs to compute is at most m2k. The
idea behind the algorithm is illustrated on Fig. 1.
To fix notation, suppose U ¼ Um � � �U2U1 is a quantum

circuit acting on n qubits. Each gate Ui acts nontrivially on
a subset of qubits suppðUiÞ ⊆ ½n� called the support of Ui.
Here and below ½n�≡ f1; 2;…; ng. Let

PtðxÞ ¼ jhxjUt � � �U2U1j0nij2 ð2Þ

be the output distribution generated by the first t gates of U
and P0ðxÞ ¼ jhxj0nij2 ¼ δx;0n . Given a subset of qubits A ⊆
½n� and a bit string x ∈ f0; 1gn, let xA ∈ f0; 1gjAj be the
restriction of x onto A.
Consider the gate-by-gate sampling algorithm described

below as Algorithm 2. We claim that this algorithm outputs
a bit string x sampled from the desired distribution
PmðxÞ ¼ jhxjUj0nij2. Indeed, let QtðxÞ be the probability
distribution of x at the end of the tth iteration of the for
loop. Let Q0ðxÞ ¼ P0ðxÞ ¼ δx;0n . Suppose we have already
proved that Qt−1ðxÞ ¼ Pt−1ðxÞ for all x. Consider the tth
iteration of the for loop and let x be the bit string sampled at
the previous iteration. Let PtðxAÞ ≔

P
y∶yA¼xA PtðyÞ be the

marginal probability of xA with respect to Pt. Note thatP
y∈S PtðyÞ ¼ PtðxAÞ. Thus

QtðyÞ ¼
X

x∶xA¼yA

Qt−1ðxÞ
PtðyÞ
PtðyAÞ

¼
X

x∶xA¼yA

Pt−1ðxÞ
PtðyÞ
PtðyAÞ

¼ Pt−1ðyAÞPtðyÞ
PtðyAÞ

¼ PtðyÞ:

To get the last equality note thatUt acts trivially on Awhich
implies Pt−1ðyAÞ ¼ PtðyAÞ since Ut is unitary. Thus
QtðxÞ ¼ PtðxÞ for all t and x.

FIG. 1. A single step of the sampling algorithm. Suppose jψi is
a state of qubit registers A (top) and B (bottom) such that B
contains only a few qubits. Given a sample x ¼ xAxB from the
distribution jhxjψij2 and a unitary gate Ut acting on B, our
algorithm produces a sample y ¼ yAyB from the distribution
jhyjI ⊗ Utjψij2. Unitarity of Ut implies that the marginal
distributions of xA and yA coincide. Thus we set yA ¼ xA. To
sample yB, calculate the probabilities jhxAyBjI ⊗ Utjψij2 for all
possible values of yB ∈ f0; 1gjBj and sample yB according to
these probabilities. The full algorithm applies the above step
inductively to each gate Ut for t ¼ 1; 2;…; m starting from the
initial state jψi ¼ j0ni and a sample x ¼ 0n.

Algorithm 1. Qubit-by-qubit sampling.

Input: An n-qubit quantum state ψ .
Output: x ∈ f0; 1gn with probability jhxjψij2.
1: Sample x1 ∈ f0; 1g from the probability distribution π1ðx1Þ.
2: for j ¼ 2 to n do
3: Sample xj ∈ f0; 1g from the probability distribution
πjðx1…xj−1xjÞ=πj−1ðx1…xj−1Þ.

4: end for
5: return x ¼ x1x2…xn

Algorithm 2. Gate-by-gate sampling.

Input: An n-qubit quantum circuit U ¼ Um � � �U2U1.
Output: x ∈ f0; 1gn with probability jhxjUj0nij2.
1: x ← 0n

2: for t ¼ 1 to m do
3: A ← f1; 2;…; ngnsuppðUtÞ
4: S ← fy ∈ f0; 1gn∶yA ¼ xAg
5: Sample x ∈ S from the probability distribution
PtðxÞ=

P
y∈S PtðyÞ

6: end for
7: return x
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To execute line 5 one needs to compute PtðyÞ for each
y ∈ S. Since jSj ≤ 2k, overall one needs to compute at most
m2k output probabilities PtðyÞ with t ¼ 1;…; m. In the
special case of the CNOTþ SUð2Þ circuits one needs to
use lines 3–5 only if Ut is a single-qubit gate. If Ut is a
CNOT, replace lines 3–5 by jxi ← Utjxi. Then, effectively
k ¼ 1 and one needs to compute at most 2m output
probabilities. Likewise, if Ut is a diagonal gate such as
a (controlled) Z rotation, one can skip the tth iteration of the
for loop since PtðxÞ ¼ Pt−1ðxÞ.
We note that Algorithm 2 can be applied almost verbatim

to the task of sampling the output distribution of an
adaptive quantum circuit which includes intermediate
measurements such that each gate may be classically
controlled by outcomes of all previous measurements [28].
We now discuss situations in which the gate-by-

gate algorithm may be preferable to the qubit-by-qubit
algorithm.
Let fðn; dÞ be the cost of computing an amplitude of an

n-qubit circuit with depth d using some strong simulation
method, such as tensor network contraction [13]. We would
expect a marginal probability such as h0njU†ðjyihyj ⊗
IÞUj0ni to have a cost comparable to fðn; 2dÞ, since in
general our best upper bound on the depth of the operator
appearing in the expectation value is 2dþ 1. Thus we
expect the gate-by-gate algorithm to have a significant
advantage over the qubit-by-qubit algorithm whenever
fðn; 2dÞ=fðn; dÞ is large. It may be helpful to consider
two extreme cases. If we use the Schrödinger simulation
method which stores the entire n-qubit state in memory as a
complex vector of length 2n and then applies gates using
sparse matrix-vector multiplication, then we have
fðn; dÞ ¼ Oðnd2nÞ and the advantage is only a constant
factor. On the other hand, if we use a simple method that
only requires polyðn; dÞmemory—the Feynman sum-over-
paths technique—then fðn; dÞ scales exponentially in d
and the advantage is substantial. The best polynomial-space
algorithm we are aware of has a runtime scaling as
fðn; dÞ ¼ Oðnð2dÞnþ1Þ [29] and in this case the advantage
of the gate-by-gate method is exponential in n. From these
examples we expect the gate-by-gate algorithm to be
advantageous in memory-limited classical simulations
where the entire state vector cannot be loaded into classical
memory.
In practice, tensor-network simulators may use heuristic

algorithms to optimize their space and memory usage.
To test whether our method can provide an advantage
when using such methods, we used CoTenGra [23] and
quimb [30] to optimize and estimate the tensor-network
contraction costs of sampling once from the output dis-
tribution of a 49-qubit-depth-16 2D quantum circuit using
both algorithms. To impose memory constraints, we used
CoTenGra’s slicing feature to restrict the maximum size of
intermediate tensors. From Table I, we observe that the
gate-by-gate algorithm incurs significantly less slicing

overheads, agreeing with the intuitive arguments. It is
important to note that the contraction costs are estimated
without actually performing the contractions. For more
details, see the Supplemental Material [31].
The gate-by-gate algorithm can also provide runtime

improvements for simulation methods based on low-rank
stabilizer decompositions. Recall that a stabilizer state of n
qubits is a state of the form Cj0ni, where C is a Clifford
circuit composed of CNOT, Hadamard, and S ¼ diagð1; iÞ
gates. The (exact) stabilizer rank χðαÞ of a quantum state α
is the minimum integer r such that α can be expressed as a
linear combination of r stabilizer states with complex
coefficients [17]. As a simple example, suppose
jψi ¼ Uj0ni, where U is a circuit of size polyðnÞ com-
posed of Clifford gates and at most l single-qubit gates
T ¼ diagð1; eiπ=4Þ. In this case it was shown [18,32] that
χðψÞ ≤ χðT⊗lÞ ≤ Oð20.3963lÞ, where jTi ∼ j0i þ eiπ=4j1i
is the single-qubit magic state [18]. It is known that any
amplitude of n-qubit stabilizer state can be computed
(including the overall phase) in time polyðnÞ [19], see
also Ref. [33]. Since ψ is a linear combination of χðψÞ
stabilizer states, any amplitude of ψ can be computed in
time polyðnÞχðψÞ. It follows that the gate-by-gate algo-
rithm can sample the output distribution of U in time
polyðnÞχðT⊗lÞ. The previous best known algorithm for
this task based on the qubit-by-qubit simulation strategy
had a runtime that scales quadratically with χðT⊗lÞ [17].
There is strong evidence that this quantity increases
exponentially with l [17,34], in which case we improve
the exponent of the runtime for the task of exact sampling.
The fastest sampling algorithms based on stabilizer-rank
methods, such as the sum-over-Cliffords method [19],
allow for some small error in total variation distance
from the true output distribution. In the Supplemental
Material [31] we show how the gate-by-gate algorithm
can also be used to improve the runtime of such methods.
While this is a more practical setting, the improvement is
less dramatic as it only concerns polynomial prefactors in
the runtime.
Our final example involves a measurement-based quan-

tum computation (MBQC) [35]. Recall that MBQC with an
n-qubit resource state ϕ involves a sequence of n single-
qubit measurements performed on a state

TABLE I. FLOP count comparison for memory-limited tensor
network simulation of a 2D depth-16 circuit on a 7 × 7 grid of
qubits. Here FG, FQ are, respectively, the FLOP counts of the
gate-by-gate and qubit-by-qubit algorithms.

log2 of max intermediate tensor size

29 31 33 35

log2ðFGÞ 58.4433 58.3197 58.1232 58.1339
log2ðFQÞ 75.4501 73.1768 71.0325 68.9512
FQ=FG 131690 29677 7693 1804
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jψi ¼ ðU1 ⊗ U2 ⊗ � � � ⊗ UnÞjϕi;

where Uj are arbitrary single-qubit unitary operators. Each
unitary Uj may depend on the outcomes of all previous
measurements, according to some efficiently computable
rule. For example, measurement of ϕ in the Fourier basis
defined by the quantum Fourier transform can be imple-
mented by MBQC with the resource state ϕ [36]. MBQC is
equivalent to the standard circuit-based quantum compu-
tation if one chooses ϕ as the 2D cluster state [35]. Here we
choose ϕ as the Kitaev’s surface code state [37,38] on a
planar graph G, e.g., the 2D square lattice. It is known [39]
that any amplitude of ψ can be computed in time Oðn3Þ by
expressing it as the partition function of the Ising model on
the dual graphG� and using the seminal result by Barahona
[5], see also Ref. [40]. This implies that the gate-by-gate
algorithm can efficiently simulate MBQC with the surface
code state on any planar graph for any temporal order of
measurements. To the best of our knowledge, this is the first
efficient classical algorithm for this task. A previous
method [39], based on the qubit-by-qubit sampling para-
digm, provides an efficient simulation of such MBQC only
under certain restrictive topological constraints on the
temporal order of measurements [41]. Moreover, in the
Supplemental Material [31] we use the results of Ref. [42]
to prove that computing certain marginal probabilities of ψ
required for the qubit-by-qubit algorithm is a #P-hard
problem. This suggests that this algorithm is incapable of
efficiently simulating MBQCwith the surface code state for
an arbitrary order of measurements.
How robust is Algorithm 2 against errors in approxi-

mating the probabilities PtðxÞ? Suppose that a subroutine is
available for exactly computing amplitudes of some n-qubit
states jϕti such that kjϕti − Ut…U2U1j0nik ≤ ϵt for all
t ¼ 1; 2;…; m. Define probability distributions

RtðxÞ ¼ jhxjUtjϕt−1ij2kϕt−1k−2;

where t ¼ 1; 2;…; m. Consider a modified version of
Algorithm 2 in which we replace Pt by Rt in line 5. In
the Supplemental Material [31] we prove that the output
distribution of this modified algorithm approximates the
ideal output distribution Pm within a statistical error at most
16

P
m−1
t¼1 ϵt. Furthermore, the modified algorithm makes at

most m2k calls to the subroutine computing amplitudes
of ϕt.
Simulation of ground states.—Suppose ψ is the unique

ground state of a Hamiltonian H describing a system of
spins or fermions with few-body interactions. Applying
such Hamiltonian H to any basis vector can flip only Oð1Þ
bits [43]. More formally, let dðx; yÞ be the Hamming
distance between bit strings x; y ∈ f0; 1gn. We require that

hxjHjyi ¼ 0 unless dðx; yÞ ≤ k; ð3Þ

for some fixed locality parameter k ¼ Oð1Þ. Equivalently,
the expansion of H in the Pauli basis can only include
products of single-qubit Pauli operators X, Y, and Z with at
most k factors X and Y. Let γ > 0 be the spectral gap of H
separating the ground energy from the rest of the spectrum.
As before, our goal is to sample a bit string x ∈ f0; 1gn

from the distribution πðxÞ ¼ jhxjψij2 given a subroutine for
computing amplitudes of ψ . More precisely, we shall only
need a subroutine for computing the ratio πðyÞ=πðxÞ for
given strings x, y. The sampling algorithm takes as input an
initial string xin such that πðxinÞ is non-negligible and
outputs a sample from a distribution ϵ close to π in the total
variation distance. The number of calls to the amplitude
computation subroutine scales as

T ∼
nks
γ

log

�
1

πðxinÞϵ
�
; ð4Þ

where s is a sensitivity parameter quantifying how much
the amplitude of ψ can change upon flipping a few bits of x.
More formally,

s ¼ max
x≠y

jhyjHjxihxjψij
jhyjψij ; ð5Þ

where x; y ∈ f0; 1gn and the maximization only includes
strings y such that hyjψi ≠ 0. We can prove a general
upper bound on s only when H is a sign-problem-free
Hamiltonian, a.k.a. stoquastic [44,45]. Such Hamiltonians
are defined by the property that all off-diagonal matrix
elements ofH in the standard basis are real and nonpositive.
In the Supplemental Material [31] we prove that s ≤
maxxhxjHjxi − E0 for any stoquastic Hamiltonian H with
the ground energyE0.We leave as an open questionwhether
the runtime dependence on s can be avoided.
Our sampling algorithm is the standard Metropolis-

Hastings Markov Chain Monte Carlo method. This method
is often used in practice for simulating measurement of
approximations to quantum ground states, e.g., those based
on neural networks [46]. It is often used as a heuristic even
if rigorous bounds on the mixing time of the Markov chain
are unavailable. In the Supplemental Material [31] we use
techniques of Refs. [47–49] to prove that Eq. (4) provides
an upper bound on the runtime of the Metropolis-Hastings
Markov chain with a simple proposal distribution that at
each step proposes to flip a randomly chosen subset of ≤ k
bits. In other words, we prove that this Markov chain is
rapidly mixing whenever the inverse spectral gap 1=γ and
the sensitivity parameter s scale at most polynomially with
n. We also describe a family of Hamiltonians H for which
the required amplitude computation subroutine can be
implemented efficiently and the sensitivity parameter obeys
s ≤ polyðnÞ. This family includes some nonstoquastic
Hamiltonians.
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Conclusions.—We have provided new methods for
reducing weak simulation of quantum measurement (sam-
pling the measurement outcome) to strong simulation
(calculating amplitudes or probabilities). Our reductions
do provide polynomial-time classical simulation algorithms
for certain special cases, which were not known to be
efficiently simulable before. In a more general setting we
obtained improved exponential-time algorithms, which is
the best one can hope for, assuming standard complexity-
theoretic conjectures [50].
We have seen that the gate-by-gate algorithm can

accelerate classical simulation of quantum circuits based
on tensor network contraction and stabilizer rank methods.
Can this improve classical simulation of random quantum
circuits, as in the recent experimental demonstration of
quantum advantage [27]? Unfortunately our algorithm
likely does not improve upon specialized sampling algo-
rithms (such as frugal rejection sampling [51]) for random
quantum circuits which exploit their Porter-Thomas-like
output distribution. On the other hand, the gate-by-gate
algorithm may be useful in benchmarking future demon-
strations of quantum advantage for more practical tasks,
where the output distribution may not have known
structure.
For ground states of local Hamiltonians a natural

question left open by our Letter is whether or not sampling
methods with provable performance guarantees can accel-
erate state-of-the-art simulations of quantum many-body
systems, such as quantum Monte Carlo, tensor network
simulation methods, or those based on neural networks.
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