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The Petz recovery channel plays an important role in quantum information science as an operation that
approximately reverses the effect of a quantum channel. The pretty good measurement is a special case of
the Petz recovery channel, and it allows for near-optimal state discrimination. A hurdle to the experimental
realization of these vaunted theoretical tools is the lack of a systematic and efficient method to implement
them. This Letter sets out to rectify this lack: Using the recently developed tools of quantum
singular value transformation and oblivious amplitude amplification, we provide a quantum algorithm
to implement the Petz recovery channel when given the ability to perform the channel that one wishes to
reverse. Moreover, we prove that, in some sense, our quantum algorithm’s usage of the channel
implementation cannot be improved by more than a quadratic factor. Our quantum algorithm also
provides a procedure to perform pretty good measurements when given multiple copies of the states that
one is trying to distinguish.
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Introduction.—Pretty good measurements [1–5] and
Petz recovery channels [6–10] are workhorses of quantum
information theory: They are used ubiquitously to prove
basic results in quantum communication and measurement
[11]. Although important for attaining quantum channel
capacities [12–16] and performing state discrimination
[1–4,9], these useful theoretical constructions are less
common in experiment, for the simple reason that there
has not been a systematic method for performing them
efficiently in practice. Our goal here is to fill this gap.
ThePetz recovery channelwas introduced in the context of

quantum sufficiency in Refs. [6,7] and later rediscovered in
Ref. [9] in the context of quantum error correction. It can be
understood as a critical part of a quantum version of the
Bayes theorem (see Sec. IV in Ref. [17]). To review it, let us
begin with the classical case. A classical channel with input
system X and output system Y over the alphabets X , Y is a
conditional probability distribution fpYjXðyjxÞgx∈X ;y∈Y . We
consider a probability distributionpXðxÞ over the alphabetX
as the input to the channel. It then follows from the Bayes
theorem that pXðxÞpYjXðyjxÞ ¼ pYðyÞpXjYðxjyÞ, where
pYðyÞ¼

P
xpXðxÞpYjXðyjxÞ. Hence, for all x ∈ X ; y ∈ Y,

we define the “reversal channel” via the formula

pXjYðxjyÞ ¼
pXðxÞpYjXðyjxÞP
xpXðxÞpYjXðyjxÞ

: ð1Þ

This channel acts on the output system Y. If the particular
distribution pYðyÞ defined above is “sent in” through this
channel, then the input pXðxÞ is recovered perfectly:
pXðxÞ ¼

P
y pXjYðxjyÞpYðyÞ. The computation of the rever-

sal channel pXjYðxjyÞ requires a specification of the input
probability distribution pXðxÞ and the forward channel
pYjXðyjxÞ. The Petz recovery channel is a quantum gener-
alization of the reversal channel above: It is a function of a
quantum channelN and an input state σ to the channel, with
the former generalizing pYjXðyjxÞ and the latter pXðxÞ. We
discuss it in more detail in what follows.
The Petz recovery channel appears often in quantum

information as a proof tool, showing that near-optimal
recovery from undesired quantum operations is possible.
Reference [9] demonstrated how this recovery channel can
be an effective means for reversing the effects of noise.
Thereafter, Ref. [18] showed that the Petz recovery channel
(therein called “transpose channel”) is a universal recovery
operation for approximate quantum error correction, which
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performs comparably to the best possible one in terms of
worst-case fidelity (see also [19,20]). The Petz recovery
channel also goes by the name “pretty good recovery,” as
used in Refs. [21,22], due to the result of Ref. [9]. Yet
another application comes from the field of quantum
communication: Reference [16] showed explicitly how
to use the Petz recovery channel in a decoder to achieve
the coherent information rate of quantum communication.
It has also found use in developing physically meaningful
refinements of quantum entropy inequalities [23–27]. See
[28–32] for further uses.
As an application of our results, our quantum algorithm

can be used to implement the pretty good measurement
(PGM) [1–5]. This measurement was used in Refs. [12,15]
as part of a coding scheme to approach the Holevo
information rate for classical communication over a quan-
tum channel. It has also been instrumental in proving bounds
for quantum algorithms. Reference [33] showed that the
PGM is an optimal measurement for solving the dihedral
hidden subgroup problem and that it is helpful in proving a
lower bound on the sample complexity of this problem.
Similar techniques have been used for quantum probably-
approximately-correct learning [34]. Reference [35] showed
how to implement the PGM for pure states, while our
algorithm for Petz recovery channels is capable of perform-
ing the PGM in the general case.
We now begin the technical part of our Letter, starting

with an explicit description of the Petz recovery channel
and the resources that we work with for its implementation.
Petz recovery channel.—The Petz recovery channel is a

function of a quantum state σA on a system A and a
quantum channelN A→B taking system A to a system B. It is
given explicitly as follows [10]:

Pσ;N
B→AðωBÞ ≔ σ1=2A N †ðN ðσAÞ−1=2ωBN ðσAÞ−1=2Þσ1=2A ; ð2Þ

where N † is the Hilbert-Schmidt adjoint [11] of the
channel N and we have omitted the system labels of
N A→B for brevity.
It is a composition of three completely positive maps:

ð·Þ → ½N ðσAÞ�−1=2ð·Þ½N ðσAÞ�−1=2; ð3Þ

ð·Þ → N †ð·Þ; ð4Þ

ð·Þ → σ1=2A ð·Þσ1=2A : ð5Þ

None of these maps are trace preserving individually, but
overall the map in Eq. (2) is trace preserving on the support
of the state N ðσAÞ [23]. We note here that the main idea
behind our algorithm is to implement the Petz recovery
channel as a composition of the three maps given in
Eqs. (3)–(5), while taking into account the fact that the
overall map in Eq. (2) is trace preserving in order to
implement it deterministically with some desired accuracy.

Block encoding.—The Petz recovery channel depends on
the state σA, and so our algorithm needs some form of
access to it. In order to cover a wide range of scenarios, we
employ the block-encoding formalism, which generalizes
the most common input models for matrices used in
quantum algorithms [36,37].
Let k·k denote the spectral norm of a matrix (also known

as the Schatten ∞-norm). For a complex matrix A and
α ≥ kAk, the matrix A=α can be represented as the upper-
left block of a unitary matrix:

U ¼
�
A=α ·

· ·

�
⇔ A ¼ αðh0j ⊗ IÞUðj0i ⊗ IÞ: ð6Þ

The unitary matrix U is said to be a block encoding of A.
Henceforth, we do not write identity operators explicitly,
but we instead include system subscripts as a guide. If the
linear map A=α acts on a qubits, then the unitary U can be
thought of as a probabilistic implementation of this map:
Given an a-qubit input state jψi, applying the unitary U to
the state j0ijψi, measuring the first system, and postselect-
ing on the j0i outcome, the second system contains a state
proportional to Ajψi=α.
This generalizes the two most relevant input models in

our case. If we are given copies of the quantum state σA,
then we can implement an (approximate) block encoding of
σA by using density matrix exponentiation [38,39] and
“taking the logarithm” of the time evolution [37].
Alternatively, if we have access to a quantum circuit
Uσ

RA that prepares a purification jψσiRA ≔ Uσ
RAj0iRj0iA

of σA, such that TrR½jψσihψσjRA� ¼ σA, then we can directly
implement an exact block encoding of σA with only two
uses of Uσ

RA as follows [36,37]:

Vσ
RAA0 ≔ ðUσ

RAÞ†ðIR ⊗ SWAPAA0 ÞUσ
RA ¼

�
σA ·

· ·

�
; ð7Þ

where system A0 is isomorphic to system A.
Assumptions.—The resources that we use for implement-

ing the Petz recovery channel are as follows: (i) Quantum
circuits UσA and UN ðσAÞ that are (approximate) block
encodings of σA andN ðσAÞ, respectively, and (ii) a quantum
circuitUN

E0A→EB that implements the channelN , in the sense
that UN

E0A→EBj0iE0 ≕VN
A→EB, where VN

A→EB is an isometric
extension of N satisfying TrE½VN

A→EBðωAÞðVN
A→EBÞ†� ¼

N ðωAÞ, for every input density operator ωA.
We note that, given an efficient description of the

channel N in terms of its Kraus operators, the unitary
UN

E0A→EB can be efficiently implemented on a quantum
computer [40]. Also, given copies or “purified access” to
σA, we can achieve the corresponding access toN ðσAÞ after
applying UN

E0A→EB, which then results in an efficient block
encoding for N ðσAÞ.
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Rewriting the Petz recovery channel.—Equation (4) calls
for the application of the adjoint N † of the channel N . We
now explain how this can be accomplished using UN

E0A→EB.
The action of the adjoint on an arbitrary operator ωB is
given by N †ðωBÞ ¼ h0jE0UN †ðIE ⊗ ωBÞUN j0iE0 [11]. Let
ΓEẼ ≔ jΓihΓjEẼ denote an operator proportional to the
maximally entangled state on E and a reference system Ẽ,
where jΓiEẼ ≔

PdE−1
i¼0 jiiEjiiẼ and dE is the dimension of

system E. Then extending the identity operator with ΓEẼ,
we rewrite the previous identity as

N †ðωBÞ ¼ TrẼ½h0jE0 ðUN
E0A→EBÞ†ðΓEẼ ⊗ωBÞUN

E0A→EBj0iE0 �:
ð8Þ

Now the interpretation of the adjoint map as a probabi-
listic quantum operation is clear: The adjoint map N †

acting on the operator ωB can be applied by tensoring in the
maximally entangled state ΓEẼ=dE, performing the inverse
of the unitaryUN , measuring the system E0, accepting if the
all-zeros outcome occurs, and, finally, ignoring the system
Ẽ (which corresponds to tracing it out).
Thus, our plan is to implement the linear extension of the

adjoint map, as given in Eq. (8). Sandwiching this between
the other two maps in Eqs. (3) and (5) comprising the Petz
recovery channel, we obtain the following isometric exten-
sion of the Petz recovery channel:

VP
B→ẼA

≔ ðh0jE0 ⊗ IẼ ⊗ σ1=2A ÞðUN
E0A→EBÞ†

× ðjΓiEẼ ⊗ ½N ðσAÞ�−1=2Þ: ð9Þ

Tracing over Ẽ then implements the Petz recovery channel
Pσ;N

B→AðωBÞ. Note that, in the rewriting above, the imple-
mentation of the adjoint map discussed in the preceding
paragraph is no longer contiguous. It proceeds in two
phases: the application of the unitary ðUN

E0A→EBÞ† before

multiplication by σ1=2A (which applies Eq. (5) ) and the
measurement and postselection after that step.
Quantum singular value transformation.—Our imple-

mentation is based on quantum singular value transforma-
tion (QSVT) [37]. QSVT transforms the singular values of
a block-encoded matrix and, thus, provides an efficient
means of quantum matrix arithmetic. Often we need to rely
on approximations, and so, when doing so, we keep track of
the error or precision δ, as well as the subnormalization
factor α: We say that U is an ðα; δÞ-block encoding of A
if kA − αðh0j ⊗ IÞUðj0i ⊗ IÞk ≤ δ.
In what follows, we manipulate block encodings Uρ of

density operators ρ. The power of QSVT is that it allows for
transforming Uρ to a block encoding of f̃ðρÞ, where f̃ is a
function applied to the singular values of its argument.More
precisely, f̃ denotes a polynomial approximation of some
function f; in view of the maps given in Eqs. (3) and (5)

above, the particular functions of interest here are f1ðxÞ ≔
x−1=2 and f2ðxÞ ≔ x1=2.
The complexity of realizing the transformed block-encod-

ing unitary Uf̃ðρÞ is stated in terms of the number of uses of
Uρ (which dominates the overall gate complexity), and it
depends on theparameters of the functional approximation f̃.
For a function f, let kfðxÞkI ≔ supx∈I jfðxÞj. Using tech-
niques from Ref. [41], for the two functions above, one can
find polynomial approximations f̃1 and f̃2 such that
ðθ1=2=2Þkf̃1ðxÞ − x−1=2k½θ;1� ≤ δ and 1

2
kf̃2ðxÞ − x1=2k½θ;1� ≤

δ for θ; δ ∈ ð0; 1=2�. If ρ has minimum singular value λmin,
then it suffices to set θ ≤ λmin. Since 1=λmin behaves like a
“condition number” for ρ, being proportional to the difficulty
of transforming ρ, we denote it with the symbol κ and employ
this notation later. Indeed, using the functional approxima-
tions from Refs. [41,41], QSVT achieves the desired trans-
formations up to the errors indicated above, with
Oðð1=θÞ logð1=δÞÞ uses of Uρ.
The quantum algorithm.—We implement the isometric

extension of the Petz recovery channel given in Eq. (9).
This consists of applying the maps in Eqs. (3)–(5) sequen-
tially, with the first and third steps employing QSVT.
Equation (9) also has a measurement component as the
final step, arising from the implementation of the map in
Eq. (4). By exploiting the trace-preserving property of
the Petz recovery channel, we amplify the probability of
success of this measurement (i.e., the projection onto j0iE0 )
using oblivious amplitude amplification [42], which is a
special case of QSVT [37]. Overall, the implementation is
precise up to ε error in diamond distance [43] (see [11] for a
definition of diamond distance). Theorem 1 below states
the guarantees of this technique.
Theorem 1.—Let Nσ , NN ðσÞ, and NN denote the number

of elementary quantum gates needed to realize the unitaries
UσA , UN ðσAÞ, and UN

E0A→EB, respectively (noting that in our
applications NN ðσÞ ≤ Nσ þ NN ). Let κσ denote an upper
bound on the reciprocal of the minimum nonzero eigen-
value of σA, and, correspondingly, let κN ðσÞ denote the same
for N ðσAÞ. There exists a quantum algorithm realizing the

channel P̃σA;N
B→A , which is an approximate implementation of

the ideal Petz recovery channel in Eq. (2), in the sense that

kP̃σA;N
B→A − PσA;N

B→Ak⋄ ≤ ε; ð10Þ

with gate complexity (up to polylogarithmic factors)

Õ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dEκN ðσÞ
q

½κN ðσÞNN ðσÞþNN þNσminðκσ;dEκN ðσÞ=ε2Þ�
�
:

ð11Þ

In Eq. (11), dE is the dimension of the system E, which is
not smaller than the Kraus rank of the channel N ð·Þ.
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In Supplemental Material [44], we provide a modified
algorithm that substitutes the dependence on dE in Eq. (11)
with the rank of the state Ñ ðσÞ, where Ñ is a channel
complementary to N [11]. For certain choices of N and σ,
this provides a dramatic reduction in the run-time.
We now break the algorithm down into its four steps and

analyze each step individually (assuming without loss of
generality that ε ¼ Oð1Þ ). We indicate the steps using the
numbers (1)–(4).
(1) To simulate the first step of the Petz recovery

channel, as described by Eq. (3), we transform the block
encoding of N ðσAÞ to a ð2 ffiffiffiffiffiffiffiffiffiffiffi

κN ðσÞ
p ; ðOðεÞ= ffiffiffiffiffiffi

dE
p ÞÞ-block

encodingUf̃1½N ðσAÞ�
R0B of ½N ðσAÞ�−1=2 using QSVT, which has

gate complexity OðκN ðσÞNN ðσÞ logðdE=εÞÞ. Then the fol-
lowing error bound holds:

kf̃1ðN ðσAÞÞ − ðN ðσAÞÞ−1=2k ≤ OðεÞ=
ffiffiffiffiffiffi
dE

p
; ð12Þ

which suffices for our purposes, as shown later.
(2) Let Ẽ be a system with dimension equal to that of E.

The second step of the algorithm is simply to prepare the
maximally entangled state jΦiEẼ ≔ jΓiEẼ=

ffiffiffiffiffiffi
dE

p
alongside

the state prepared above and then apply the unitary
ðUN

AE0→BEÞ†. Note that jΦiEẼ is a normalized quantum state,
introducing an additional factor of 1=dE in the output density
operator, which resurfaces in the subnormalization factor of
the overall unitary (see Eq. (15) ). The maximally entangled
state jΦiEẼ is prepared by means of a unitaryUΦ

EẼ
acting on

the state j0iEẼ, so that jΦiEẼ ≔ UΦ
EẼ
j0iEẼ. Note that the

unitaryUΦ
EẼ

is easy to implement. For example, if systemsE
and Ẽ consist of qubits, one can applyHadamard gates on the
qubits of E and CNOT gates between pairs of qubits of E and
Ẽ. In this step, we have described the first half of the
procedure for implementing a linear extension of Eq. (4); the
final part, which consists of measurement and postselection,
is deferred to the fourth step.
(3) The third step of the algorithm is to apply an

approximation of the map in Eq. (5) that conjugates the
state by σ1=2A . Analogous to the first step, we transform the
block encoding of σA to a ð2; ðOðεÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dEκN ðσÞ
p ÞÞ-block

encoding Uf̃2ðσAÞ
R00A of f̃2ðσAÞ using QSVT, which has gate

complexityOðκσNσ logððdEκN ðσÞÞ=εÞÞ. Then the following
error bound holds:

kf̃2ðσAÞ − σ1=2A k ≤ OðεÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dEκN ðσÞ

q
: ð13Þ

We can now apply the unitary Uf̃2ðσAÞ
R00A to the output of

step 2. In detail, letting ρA denote the output state of step 2,
we tensor in the state j0ih0jR00 to the input state ρA and

perform the unitary Uf̃2ðσAÞ
R00A .

Let us summarize the algorithm up to this point. We have
described the addition of auxiliary systems as happening

separately in each step. However, we are free to tensor them
in to the input state ωB at the start, enlarging the input state
to j0ih0jR00 ⊗ j0ih0jEẼ ⊗ j0ih0jR0 ⊗ ωB. Then to this state,
we apply the following product of unitaries:

W̃ ≔ Uf̃2ðσAÞ
R00A ðUN

E0A→EBÞ†ðUΦ
EẼ

⊗ Uf̃1ðN ðσAÞÞ
R0B Þ; ð14Þ

whereUf̃2ðσAÞ
R00A andUf̃1ðN ðσAÞÞ

R0B are implemented using QSVT.
The unitary W̃ approximates the isometric extension in
Eq. (9) and can be represented as the following block
encoding:

W̃ ¼
�
1
4

ffiffiffiffiffiffiffiffiffiffiffi
1

dEκN ðσÞ

q
ṼP
B→ẼA

·

· ·

�
; ð15Þ

where the linear operator ṼP
B→ẼA

is an approximate iso-
metric extension of the Petz recovery channel and is
defined through its action on a ket jψiB as

ṼP
B→ẼA

jψiB≔ f̃2ðσAÞðVN
A→EBÞ†f̃1ðN ðσAÞÞjΓiEẼjψiB: ð16Þ

After applying W̃ to the enlarged input state, we would
like to measure the R00E0R0 systems and obtain the all-zeros
state as the outcome (which corresponds to the top-left
block of W̃). Receiving this outcome signals the successful
implementation of the desired map ṼP

B→ẼA
, up to a

subnormalization factor of 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κN ðσÞdE

p
. To compare this

to the ideal isometric extension in Eq. (9), we should
account for the accumulated errors due to the approximate
implementations of N ðσAÞ−1=2 and σ1=2A in W̃. It follows
that

kṼP
B→ẼA

− VP
B→ẼA

k ≤ OðεÞ; ð17Þ

where ṼP
B→ẼA

is defined in Eq. (16) and VP
B→ẼA

in Eq. (9).
To see this, observe that the left-hand side of Eq. (17) can
be bounded from above by the following quantity:

kσ1=2A − f̃2ðσAÞkkðVN
A→EBÞ†N ðσAÞ−1=2jΓiEẼk

þkf̃2ðσAÞðVN
A→EBÞ†kkjΓiEẼkkN ðσAÞ−1=2− f̃1½N ðσAÞ�k;

ð18Þ

which follows from applying the triangle inequality and
submultiplicativity of the spectral norm. Noting that jΓiEẼ
is the unnormalized maximally entangled vector, we further
bound the following terms:

kðVN
A→EBÞ†N ðσAÞ−1=2jΓiEẼk ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dEκN ðσAÞ

q
; ð19Þ

kf̃2ðσAÞðVN
A→EBÞ†kkjΓiEẼk ≤ 2

ffiffiffiffiffiffi
dE

p
: ð20Þ

PHYSICAL REVIEW LETTERS 128, 220502 (2022)

220502-4



The second bound follows because f̃2ðσAÞ is a block
encoding with norm at most 2. Putting Eqs. (18)–(20)
together with the bounds in Eqs. (12) and (13), we conclude
an overall error between VP and ṼP of OðεÞ.
(4) Finally, we move on to the last step, which is a

measurement of the R00E0R0 systems. Equation (15) makes
it clear that the probability psuccess of measuring the all-
zeros state, at this point, is approximately 1=ð16dEκN ðσÞÞ.
We would like to amplify this probability, and so we use
oblivious amplitude amplification to implement an approxi-
mate projection onto this state. This, too, can be achieved
using QSVT techniques [37] and requires a number of
repetitions of W̃ that scales asOð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

psuccess
p Þ, which in this

case is Nrep ≔ Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dEκN ðσÞ

p Þ. After applying (robust)
oblivious amplitude amplification (see Theorem 28 in
Ref. [46]), we obtain a unitary that is a ð1;OðεÞÞ-block
encoding of the isometric extension VP

B→ẼA
, providing an

OðεÞ-approximate implementation of the Petz recovery
channel.
The complexity of our algorithm is given by Nrep times

the complexity of implementing W̃. As we discussed
previously, the cost of implementing the first step in W̃ is
OðκN ðσÞNN ðσÞ logðdE=εÞÞ. The complexity of implementing
the second step is OðNN þ log dEÞ, where the logarithmic
term is the cost of implementingUΦ

EẼ
. Finally, the complexity

of the third step isOðεσNσ logððdEεN ðσÞÞ=εÞÞ. An alternative
for this last step is to consider choosing a threshold θ higher
than 1=κσ and approximating the square root function by
constant zero below the threshold. Indeed, then choosing
θ≈ε2=ðdEκN ðσÞÞ suffices, resulting in thealternative complex-
ity OððdEκN ðσÞ=ε2ÞÞNσ logððdEκN ðσÞ=εÞÞ of the third step.
Lower bounds.—Our algorithm uses the forward channel

unitary UN
E0A→EB aboutOð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dEκN ðσÞ
p Þ times. We now prove

that there is no generally applicable algorithm that uses

UN
E0A→EB fewer thanΩðdð1=2Þ−αE καN ðσÞÞ times, for allα ∈ ½0; 1

2
�,

thereby ruling out the possibility of large improvements on
our algorithm that would simultaneously improve the
dependence on both parameters dE and κN ðσÞ.
We consider solving the problem of unstructured search

of N ≥ 2 elements with only a single marked element. Let
O be a search oracle that recognizes the single marked
element. Let the input state σA be the maximally mixed
state representing a uniformly random index i ∈ ½N�. The
forward channel N A→B applies the search oracle and
outputs its output, which is equal to 1 if i is the marked
element and is equal to 0 otherwise. Hence, N A→BðσAÞ ¼
diagð1 − ð1=NÞ; ð1=NÞÞ and κN ðσÞ ¼ dE ¼ N. Let PN ;σA

be the Petz recovery channel defined from N and σA as
specified above. Now applying the exact channel PN ;σA on
the state ωB ¼ j1ih1j finds the marked element with
certainty. Thus, for every constant c < 1, applying a
c-approximate channel P̃N ;σA on ωB still finds a marked

element with probability at least 1 − c. This requires

Ωð ffiffiffiffi
N

p Þ ¼ Ωðdð1=2Þ−αE καN ðσÞÞ uses of O, as the well-known

quantum search lower bound states [47].
Pretty good measurement.—One can use our algorithm

to implement the pretty good measurement [1–5], which is
a special case of the Petz map. In this application, one is
given a set fσxBgx of states and a probability distribution pX.
Let σXB denote the following classical-quantum state:
σXB ≔

P
x pXðxÞjxihxjX ⊗ σxB. Let N XB→B ≔ TrX be the

partial trace channel that discards system X.
We now plug these choices into Eq. (2). The adjoint map

ðN XB→BÞ† appends the identity on system X. Let
σ̄B ≔ N XB→BðσXBÞ ¼

P
x pXðxÞσxB. The resulting Petz

recovery channel is as follows:

PσXB;TrX
B→XB ðωBÞ ≔

X
x

½x�X ⊗ pXðxÞðσxBÞ1=2ðσ̄BÞ−1=2

× ωBðσ̄BÞ−1=2ðσxBÞ1=2;

which is known as the “pretty good instrument” [23] and
where ½x�≡ jxihxj. This is a generalization of the pretty
good measurement that has a quantum output in addition to
the usual classical measurement output; the PGM is
obtained by discarding the quantum output.
We check the necessary assumptions for our technique

against what is potentially available for experiments. The
isometric extension of the channel TrXð·Þ is simply the
identity. If we have copies of σXB, then our algorithm is
applicable, but it is more efficient in the case when we can
prepare a purification of σXB. Applying Theorem 1, we
arrive at a quantum algorithm implementing the pretty good
instrument with performance guarantees as in Eqs. (10) and
(11), where

dE ¼ jXj; κN ðσÞ ¼ κσ̄; κσ ¼ min
x
pXðxÞκσxB : ð21Þ

Conclusion.—We have developed a quantum algorithm
for implementing the Petz recovery channel and the pretty
good measurement. This solves an important open problem
in quantum computation, and, more generally, it opens up a
new research paradigm for realizing fully quantum
Bayesian inference on quantum computers.
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