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The study of entanglement in multipartite quantum states plays a major role in quantum information
theory and genuine multipartite entanglement signals one of its strongest forms for applications. However,
its characterization for general (mixed) states is a highly nontrivial problem. We introduce a particularly
simple subclass of multipartite states, which we term pair-entangled network (PEN) states, as those that can
be created by distributing exclusively bipartite entanglement in a connected network. We show that genuine
multipartite entanglement in a PEN state depends on both the level of noise and the network topology and,
in sharp contrast to the case of pure states, it is not guaranteed by the mere distribution of mixed bipartite
entangled states. Our main result is a markedly drastic feature of this phenomenon: the amount of
connectivity in the network determines whether genuine multipartite entanglement is robust to noise for
any system size or whether it is completely washed out under the slightest form of noise for a sufficiently
large number of parties. This latter case implies fundamental limitations for the application of certain
networks in realistic scenarios, where the presence of some form of noise is unavoidable. To illustrate the
applicability of PEN states to study the complex phenomenology behind multipartite entanglement, we also
use them to prove superactivation of genuine multipartite nonlocality for any number of parties.
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Introduction.—Entanglement is at the core of the foun-
dations of quantum mechanics and it is a crucial resource
for the applications of quantum information theory [1]. The
analysis of many-body entanglement has provided relevant
tools for condensed matter physics [2] and has given rise to
several concrete multipartite applications such as secret
sharing [3], conference key agreement [4], and measure-
ment-based quantum computation [5]. Studying the com-
plex ways in which multipartite entanglement manifests
itself is thus interesting both theoretically and to come up
with new applications. Of particular interest is the class of
genuine multipartite entangled (GME) states, which are
those that cannot be obtained by mixing only partially
separable states and, therefore, entanglement spreads
among all parties and not just a subset. GME is known
to play a nontrivial role in certain quantum algorithms [6]
and multipartite quantum key distribution schemes [7].
Moreover, remarkably, it has been shown to be a necessary
condition to achieve maximum sensitivity in quantum
metrology [8] and to obtain a multipartite private state
and, hence, to establish a secret key [9]. Thus, the
certification of GME states has been studied in detail
[10], although the characterization of entanglement in
general is known to be computationally hard [11]. On
the other hand, the preparation, control, and distribution of
GME states is a major experimental challenge. Arguably,

the most feasible way to achieve this (e.g., in quantum
optics applications) is by distributing exclusively bipartite
entanglement among different pairs of parties giving rise
to a connected network. In fact, quantum networks are
currently being actively investigated as a realistic platform
for quantum information processing. This includes estab-
lishing long-range entanglement starting from smaller
entanglement links or harnessing node-to-node entangle-
ment in order to achieve on-demand quantum communi-
cation between different possible subsets of parties (see
[12] and references therein).
In this Letter, we intend to put forward a theoretical

analysis, from the point of view of entanglement theory, of
the properties of the underlying states that arise in quantum
networks, which we term pair-entangled network (PEN)
states. It should be noticed that such a state is a universal
resource under local operations and classical communica-
tion (LOCC) provided that the underlying graph is con-
nected and the bipartite entanglement shared by the nodes
is of sufficient quality. This is because by means of local
preparation and teleportation the parties can then end up
sharing any quantum state of a given local dimension.
Recent work has considered the limitations arising from the
distribution of arbitrary bipartite entanglement in networks
when state manipulation is bound to a class of operations
that is a strict subset of LOCC and it has been shown that
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certain GME states cannot be prepared in this way [13,14].
However, here we study the entanglement properties of
PEN states within the LOCC paradigm depending on the
type of entanglement shared and the topology of the
network [15]. From this point of view, to ask when a
PEN state is GME seems a very relevant question as this
makes it possible to benchmark the quality of the quantum
network. If the corresponding PEN state is not GME, then it
cannot be transformed by LOCC into a GME state and,
therefore, as pointed out above, this leads to fundamental
limitations in applications.
A simple argument shows that all pure PEN states are

GME independently of the amount of entanglement shared
and the geometry of the network (if it is connected) and,
actually, we have recently shown that they are even genuine
multipartite nonlocal (GMNL) [16]. However, in realistic
implementations noise is unavoidable and mixed PEN
states must be considered. The previous property of pure
PEN states directly implies that, for a fixed network, GME
should be robust to some noise, but the extent to which this
holds is unclear. In fact, to our knowledge it is not known
whether sharing arbitrary bipartite entanglement is enough
to guarantee that a PEN state is GME. Here, we consider a
simple and realistic model in which the nodes share
isotropic states, i.e., maximally entangled states mixed
with white noise, and show that the answer to the above
question is negative. The mere fact that the nodes share
bipartite entanglement does not imply that a connected
network is GME. Furthermore, this not only depends on the
level of noise but also on the topology of the network.
However, our main result is a more extreme feature of this
phenomenon. Instead of asking for which value of the noise
parameter a given network is GME, we consider a more
realistic approach in which the noise parameter is fixed and
we ask which networks display GME under this constraint.
It turns out that, for any nonzero value of the noise, any tree
network of sufficiently many parties is no longer GME and,
on the contrary, the GME of a completely connected
network persists for any number of parties if the noise is
below some threshold. Thus, asymptotic survival of GME
depends drastically on the geometry of the network. While
any unavoidable limitation in the ability to prepare
entangled states upper bounds the number of parties that
can share GME in some topologies, a larger connectivity
guarantees GME for any size provided that a certain level of
quality in the prepared entangled states can be achieved.
In addition to this, the overwhelming complexity of

multipartite state space has often led to constrain the study
of entanglement to subsets of states with relevant physical
and/or mathematical properties such as graph states [17],
locally maximally entangleable states [18] or tensor net-
work states [19]. We believe that the class of PEN states is a
promising platform endowed with a clear operational
motivation in order to study the rich phenomenology of
multipartite entanglement. Based on this, using PEN states

we provide examples of GME states which are not GMNL,
different from those known before [20,21]. The tensor
product structure of quantum theory enables the fact that
objects that are not resourceful may display this resource
when several copies of them are taken together, a phe-
nomenon known as superactivation. This is the case of
nonlocality, where it has been proven that superactivation is
possible in the bipartite case [22]. Here, building on this
construction, we prove superactivation of GMNL for any
number of parties using the aforementioned states.
Preliminaries.—As mentioned above, we will consider

networks where the nodes share isotropic states on
Cd ⊗ Cd:

ρðpÞ ¼ pϕþ
d þ ð1 − pÞ1̃; ð1Þ

where jϕþ
d i ¼ ð1= ffiffiffi

d
p ÞPd−1

i¼0 jiii is the d-dimensional max-
imally entangled state, ϕþ

d ¼ jϕþ
d ihϕþ

d j and 1̃ ¼ 1=d2.
Isotropic states not only represent a standard noise model
but they also possess nontrivial symmetry properties. This
has led to an in-depth study of these states and they appear
as an intermediate step in several protocols [23]. In
particular, isotropic states are entangled if and only if p >
1=ðdþ 1Þ [23].
PEN states are defined by selecting an undirected graph

G ¼ ðV; EÞ that encodes the structure of the network. The
vertices V ¼ ½n� ≔ f1; 2;…; ng represent the parties and
the edges E ⊆ fði; jÞ∶i; j ∈ V; i < jg represent when two
nodes share a bipartite state. In order to specify the PEN
state, one must specify G as well as which state is
associated to every edge in E. In our case, we will always
consider isotropic states ρijðpÞ shared by parties i and j
[24] and, for simplicity, we will often consider that all
edges are given by the same isotropic state. Thus, given the
graph G and the noise parameter p, the corresponding
isotropic PEN state is

σGðpÞ ¼ ⊗
ði;jÞ∈E

ρijðpÞ: ð2Þ

Here, the indices in the tensor product indicate to which
local Hilbert space each qudit of the isotropic states belongs
[25]. Thus, given G, party i holds degðiÞ qudits [where
degðiÞ is the degree of vertex i] and the local dimension of
σGðpÞ for each party i is ddegðiÞ. We will focus on some
particular graphs: a tree graph is a graph with no cycles,
such as the star graph in which a central node is connected
to all other vertices and there are no more edges. These
are graphs with the lowest connectivity. On the other
hand, a completely connected graph is that for which
E ¼ fði; jÞ∶i; j ∈ V; i < jg. Sometimes it will be conven-
ient to alter the notation for vertices in order to label the
different particles held by one party. For instance, for three
parties A, B, and C the star and completely connected PEN
states can be also respectively denoted by
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σstarðpÞ ¼ ρA1BðpÞ ⊗ ρA2CðpÞ;
σccðpÞ ¼ ρA1B1

ðpÞ ⊗ ρA2C1
ðpÞ ⊗ ρB2C2

ðpÞ: ð3Þ

Last, we provide the definition of GME. Given the n-
partite Hilbert space H ¼⊗n

i¼1 Hi, a pure state jψi ∈ H is
biseparable (otherwise GME) if jψi ¼ jψMi ⊗ jψ M̄i for
some M ⊊ ½n� and its complement M, where jψMi ∈⊗i∈M
Hi and jψMi ∈⊗i∈M Hi. The definition extends to mixed
states by taking the convex hull: the set of biseparable states
is convfjψihψ j∶jψiis biseparableg and a state that does not
belong to it is GME. It follows from this definition that the
set of biseparable states is closed under LOCC. Notice that,
for PEN states, it is immediate that if a subset of the
network only shares separable states with its complement,
then the PEN state is biseparable. It is worth pointing out
that studying GME in PEN states built from isotropic states
is not only a standard noise model but also quite general,
since all states with entangled fraction larger than 1=d can
be transformed by LOCC into an entangled isotropic
state [23].
Robustness of GME for isotropic PEN states.—The fact

that any PEN state is GME for any connected network
sharing arbitrary bipartite pure entangled states follows by
noticing that the reduced state corresponding to any subset
of parties M ⊊ ½n� will in this case be mixed. Notice that,
since the set of biseparable states is closed, any given fixed
PEN state will then tolerate some noise in its edges so as to
remain GME. However, this still leaves open the question
of whether sharing arbitrary bipartite entanglement in any
connected network is enough to generate GME. We start by
observing that already the simplest case of tripartite PEN
states with two-qubit isotropic edges [cf. Eq. (3)] shows
that this is not the case (disproving, moreover, a conjecture
in [35]). Although we did not compute the exact thresholds,
by explicitly constructing biseparable decompositions and
using the techniques of [36] to build fully decomposable
witnesses for these states, in [25] we prove bounds on the
noise parameter p that guarantee biseparability or GME for
σstarðpÞ and σccðpÞ. The results are summarized in Table I.
Notice that for 0.491 < p ≤ 0.547, σccðpÞ is GME while
σstarðpÞ is biseparable. Thus, this proves the intuitive fact
that increasing the connectivity by producing more links
makes GME more robust to noise.
We now move onto our main result. The above obser-

vations show that if an experimental implementation is

bound to a certain visibility in the preparation of isotropic
states, the ability to display GME may depend on the
network configuration. Nevertheless, improving the appa-
ratuses to produce isotropic states with p > 0.577 will
suffice in any connected tripartite configuration. Increasing
this visibility will ensure GME for any network of a fixed
number of parties. However, this does not necessarily imply
that GME asymptotically survives, i.e., that there is a
threshold in the visibility an experimentalist can aim at
above which GME is guaranteed independently of the
number of parties. This is indeed a more realistic situation,
where a certain quantum state can be obtained in experi-
ments and one wants to use it in a large network. Since
deleting edges is LOCC (as this amounts to tracing out
subsystems), asymptotic survival of GME in one configu-
ration ensures it for those with more links; however, it is not
at all clear in principle whether this phenomenon is universal,
impossible, or whether it depends on the network.
We first focus on a general class of PEN states which

covers the networks of lowest connectivity: tree graphs. For
this family, we find a negative answer to the question of
asymptotic survival of GME.
Theorem 1.—Let G ¼ ðV; EÞ be a tree graph with n

vertices and let σGðpÞ denote the corresponding n-partite
isotropic PEN state as given by Eq. (2). Then, σGðpÞ is
biseparable if jEj ≥ dp=ð1 − pÞ.
The proof (cf. Supplemental Material [25]) is obtained

by obtaining an explicit biseparable decomposition of
σGðpÞ using the separability properties of isotropic states.
To illustrate the previous result, note that the n-partite PEN
state σstarðpÞ with two-qubit isotropic edges is biseparable
when n ≥ ð1þ pÞ=ð1 − pÞ. Thus, a visibility p ¼ 0.6
precludes GME for more than three parties, while the
already experimentally demanding value of p ¼ 0.95
bounds the size to 38 parties. This shows a fundamental
limitation to GME distribution in practical scenarios such
as the star configuration in which a powerful central
laboratory prepares entangled states for satellite nodes.
It should be stressed that the proof of Theorem 1 can be

easily generalized to other noise models and, more impor-
tantly, to other networks. In this sense, in Supplemental
Material, Theorem 4 [25], we prove a similar result for
polygonal networks, i.e., those based on a cycle graph. At
this point one may wonder whether asymptotic survival of
GME is at all possible. Our next result shows that this is
indeed the case by considering the network of highest
connectivity.
Theorem 2.—Let G be a completely connected graph of

n vertices and let σccðpÞ denote the corresponding n-partite
isotropic PEN state as given by Eq. (2). Then, there exists a
value of p0 < 1, which is independent of n (i.e., depends
only on d), such that σccðpÞ is GME for every n and for
all p > p0.
Hence, our results uncover a fundamental property of

entanglement in quantum networks: asymptotic survival of

TABLE I. Bounds for biseparability and GME for tripartite
PEN states with two-qubit isotropic edges. Notice that both states
can be biseparable above the threshold p > 1=3 that determines
that the edges are entangled.

Biseparable for p ≤ GME for p >

σstarðpÞ ð1þ 2
ffiffiffi
2

p Þ=7 ≃ 0.547 1=
ffiffiffi
3

p
≃ 0.577

σccðpÞ 3=7 ≃ 0.429 ð2 ffiffiffi
5

p
− 3Þ=3 ≃ 0.491
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GME depends on the topology. The proof of Theorem 2,
which is given in Supplemental Material [25], relies on two
parts. First, we establish an upper bound on the sum over all
pairs of parties of the fidelity with the maximally entangled
state ϕþ

2 that can be achieved after any LOCC protocol
starting with a biseparable state. Then, we show that, above
a certain threshold in the visibility, σccðpÞ can overcome
this bound by edge teleportation and entanglement distil-
lation when n is large. Once GME is ensured to persist for a
large number of parties, it follows that, for a fixed, large
enough visibility, GME can be guaranteed for completely
connected networks of any size. The precise value of the
threshold p0 can be explicitly given (at least in the limit of
large size) as this is controlled by the success of the
particular entanglement distillation protocol that is imple-
mented. We used the one-way distillation protocol of [37],
which in the particular case where the nodes share two-
qubit isotropic states yields p0 ≃ 0.865. We did not attempt
any optimization in this direction.
Constructing PEN states with relevant entanglement

properties.—In addition to the relevance of PEN states
in the context of networks, we find this family extremely
versatile to study general properties of multipartite entan-
glement. Here, we will focus on the relation between
quantum entanglement and nonlocality. The latter concept
refers to the possibility of obtaining certain correlations
when performing separate measurements on multipartite
quantum states which cannot be explained classically, and
it is crucial in many applications in quantum information
theory [38]. In precise terms, a given n-partite probability
distribution P ¼ fPðα1α2…αnjχ1χ2…χnÞgα1;…;αn;χ1;…;χn
(with input χi and output αi for party i) is said to be
GMNL if it is not of the form

Pðα1α2…αnjχ1χ2…χnÞ
¼

X

M⊊½n�

X

λ

qMðλÞPMðfαigi∈Mjfχigi∈M; λÞ

× PMðfαigi∈Mjfχigi∈M; λÞ; ð4Þ

where qMðλÞ ≥ 0 ∀ λ;M and
P

λ;M qMðλÞ ¼ 1.
Otherwise, we say that P is bilocal. The distributions
PM; PM will be assumed to be nonsignaling as this captures
most physical situations better than unrestricted PM; PM
[39–42]. An n-partite state ρ is GMNL if local measure-

ments fEðiÞ
αijχi ≥ 0g (

P
αi
EðiÞ
αijχi ¼ 1∀ χi; i) exist which give

rise to a GMNL distribution

Pðα1α2…αnjχ1χ2…χnÞ ¼ trðρ ⊗
n

i¼1
EðiÞ
αijχiÞ: ð5Þ

While GMNL states are GME, as mentioned in the
introduction, the converse implication is not true for any
number of parties [20,21]. Finding more examples of GME
states that are bilocal and the conditions under which this

might happen is crucial to fully understand the relation
between entanglement and nonlocality in the multipartite
setting. In fact, the first such example found in the bipartite
case [43,44] is a cornerstone in the field.
It is worth mentioning that many copies of isotropic

PEN states are always GME [as long as p > 1=ðdþ 1Þ for
the underlying isotropic states]. The fact that this holds
even for biseparable PEN states is possible because the set
of biseparable states is not closed under tensor products.
Indeed, taking many copies of an isotropic PEN state can
be understood as having another PEN state with the same
topology but where each edge represents many copies of
an isotropic state and, thus, whose edges are more
entangled. By means of the LOCC protocol of [23],
starting from sufficiently many copies of any isotropic
PEN state one can distill another PEN state where each
edge represents a state arbitrarily close to a maximally
entangled state. However, this new state is GME (in fact,
GMNL by [16]) and, therefore, the original state must be
GME as well.
The situation is not so clear when looking at non-

locality since LOCC transformations do not preserve the
set of bilocal states. Being able to obtain a GMNL state
by taking many copies of a bilocal one would yield
GMNL superactivation. While this has been shown in
the bipartite scenario [22], to our knowledge, it has not
been studied for more than two parties. Our last result
tackles the previous two questions. It provides new
families of bilocal GME states and, moreover, it shows
that superactivation can also hold in the multipartite
setting.
Theorem 3.—Let τðpÞ denote the n-partite PEN state

corresponding to a star graph in which all edges represent
the maximally entangled state except one, which is given
by the isotropic state ρðpÞ. Then, if

1

dþ 1
< p ≤

ð3d − 1Þðd − 1Þd−1
ðdþ 1Þdd ; ð6Þ

(i) τðpÞ is GME ∀ n ≥ 3; (ii) τðpÞ is not GMNL ∀ n ≥ 3;
and (iii) τðpÞ⊗k is GMNL ∀ n ≥ 3 if k is large enough.
To obtain this result (see [25]), we prove that any star

network with an entangled isotropic state on one edge
and maximally entangled states on the rest is GME. We
also establish a connection between having bilocality of
PEN states and the edges being nonsteerable—a well-
studied property of bipartite quantum states, intermediate
between entanglement and nonlocality [45]. We show
that any star network with a nonsteerable state on one
edge is automatically bilocal. Combining the previous
two results we can obtain a network τðpÞ verifying
conditions (i) and (ii) above, where the bounds in
Eq. (6) guarantee that the edge with the isotropic state
is entangled but nonsteerable [46]. Finally, using the

PHYSICAL REVIEW LETTERS 128, 220501 (2022)

220501-4



ideas of [47], we extend the Bell inequality used to prove
bipartite superactivation in [22,48] to a multipartite one
in order to show that τðpÞ⊗k is GMNL for a large
enough k.
Conclusions.—In this Letter we have introduced the

class of multipartite PEN states as those underlying the
current proposals of quantum networks and we have
investigated their GME properties. We have shown that
sharing bipartite entanglement in a connected network does
not guarantee GME, but that both a higher quality of node-
to-node entanglement and a larger connectivity play in
favor of displaying this property. Our main result is a
drastically contrasting behavior with respect to this feature:
while tree isotropic PEN states cannot be GME for any
value of the visibility p < 1 for sufficiently many parties,
the GME of the completely connected PEN state is robust
for all visibilities above a fixed threshold for any system
size. Furthermore, the class of PEN states is an operation-
ally motivated subset of multipartite states with a clear
mathematical structure in which the well-developed theory
of bipartite entanglement can be exploited to analyze
entanglement in the multipartite scenario. Thus, we have
provided a construction of GME but non-GMNL PEN
states for any number of parties that lead to superactivation
of GMNL.
Besides these particular results, we believe that PEN

states might find applications in different contexts and
that this work can be continued in several directions. We
conclude by posing two such possibilities. First, tree
graphs and the completely connected graph represent the
two most extreme cases in terms of connectivity. What
is the minimal amount of connectivity that enables
asymptotic survival of GME? Second, the aforemen-
tioned property of tree networks implies that their
GMNL cannot asymptotically survive either. However,
can the asymptotic survival of GME in completely
connected PEN states be extended to GMNL? The
dependence of these features on the geometry of the
network suggests that there might be a fruitful interplay
between these problems and the theory of complex
networks.
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