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We characterize absorption-time distributions for birth-death Markov chains with an absorbing
boundary. For “extinction-prone” chains (which drift on average toward the absorbing state) the asymptotic
distribution is Gaussian, Gumbel, or belongs to a family of skewed distributions. The latter two cases arise
when the dynamics slow down dramatically near the boundary. Several models of evolution, epidemics,
and chemical reactions fall into these classes; in each case we establish new results for the absorption-time
distribution. Applications to African sleeping sickness are discussed.
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Modeling extinction-prone dynamics is essential to our
understanding of epidemics, disease incubation, and evo-
lution. For example, a key goal in epidemiology is to
implement control measures (such as social distancing or
vaccination) that push the dynamics toward a state where
the disease is eradicated on a reasonable timescale [1–3].
Similarly, disease incubation [4,5] and evolution [6,7]
involve highly fit infectious cells or mutant species out-
competing their less fit counterparts.
In these fields the distribution of extinction times, rather

than just the mean, is crucial. For example, how long must a
patient wait after exposure to a disease to be sure they are
not infected? In the best and worst case scenarios, how long
must epidemiological control measures be imposed to stop
an outbreak? Knowledge of the extinction-time distribution
provides an answer to these questions. Incubation period
distributions have long been measured empirically to
inform treatment regimens or public health initiatives
[4]. Similarly, a recent study used a data-driven model
of African sleeping sickness in the Democratic Republic of
Congo to predict the distribution of times until the disease
is eradicated [3].
In this Letter, we show that two particular extinction-

time distributions—Gaussian and Gumbel distributions—
arise generically from basic features of the stochastic
dynamics driving the system. These distributions were
found previously in several models of evolutionary dynam-
ics [5,8,9]. We show now that these same distributions
appear in much more general classes of birth-death Markov
chains, along with a family of skewed distributions that
include the Gumbel. Extending the approach introduced in
Ref. [9], we provide analytical criteria that predict when the
asymptotic absorption-time distribution is normal, Gumbel,
or a member of the family of skewed distributions. We
apply our results to models of epidemiology [10–12],
ecology [13–15], stochastic chemical reactions [16,17],
and evolutionary games [18], for which the predicted

distributions agree with those measured via simulation.
To our knowledge, this is the first calculation of the
asymptotic absorption-time distributions for these models.
As an application, we show that the Gumbel distribution
closely resembles eradication-time distributions for African
sleeping sickness.
We analyze birth-death Markov processes with a linear

chain of states m ¼ 0; 1;…; N. For example, m might
represent the number of infected individuals in an epi-
demic. The system has an absorbing state at m ¼ 0 (where
nobody is infected) and a reflecting state at m ¼ N (the
maximum allowed infected population). Transitions occur
only between neighboring states, i.e., the population can
only increment by 1 in either direction. The dynamics of
pmðtÞ, the probability of occupying state m at time t, obey
the master equation,

_pmðtÞ ¼ bm−1pm−1ðtÞ þ dmþ1pmþ1ðtÞ
− ðbm þ dmÞpmðtÞ; ð1Þ

where bm and dm are, respectively, the birth and death rates
at which the state increases or decreases from state m. The
master equation can also be expressed as _pðtÞ ¼ Ω · pðtÞ,
where Ω is the transition matrix containing the birth and
death rates. Since the state at m ¼ 0 is absorbing and the
state m ¼ N is reflecting, we have b0 ¼ bN ¼ 0. For
simplicity we assume the system starts in an initial state
m ¼ N, i.e., pmð0Þ ¼ δm;N , but our results apply more
broadly [19]. The quantity we are interested in is the
first-passage time T to the absorbing state m ¼ 0; here we
focus on obtaining the probability distribution about
the mean.
Building on our recent results [9], we develop an

approach to determine the absorption-time distributions
for general classes of birth-death Markov chains in the limit
of large system size. The key insight is to introduce a
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change of variables, Dm ¼ bm þ dm and rm ¼ bm=dm. If
the system is in state m, it waits on average a time D−1

m
before increasing or decreasing. The probabilities of the
next step being forward or backward are rm=ð1þ rmÞ and
1=ð1þ rmÞ respectively; rm is the ratio of these proba-
bilities. Thus, our coordinate change separates the random-
walk portion of the Markov process, which describes the
relative probabilities of stepping forward or backward at
each state, from the times spent waiting in each state. This
change of variables leads to a transition matrix decom-
position, Ω ¼ ΩRWD, where D is diagonal with elements
Dm and ΩRW is the transition matrix for a biased random
walk. The number of times the system visits each state
depends only on the random-walk portion of the process.
The elements Vij of V ¼ −Ω−1

RW encode the average
number of visits to state i before absorption, starting from
state j.
To characterize the asymptotic distributions, we compute

the cumulants κnðNÞ of the absorption time T, which
describe the shape of the distribution. For instance, κ1 is the
mean, κ2 is the variance, and κ3=κ

3=2
2 is the skew. Following

Ref. [9] we use the matrix decomposition above to derive
the cumulants (generalizing the previous result to non-
constant rj):

κnðfrjg;NÞ¼
X

1≤i1≤i2≤…≤in≤N

wn
i1i2���inðfrjgÞ

ðbi1 þdi1Þ� � �ðbin þdinÞ
: ð2Þ

Here wn
i1i2���inðfrjgÞ are weighting factors that depend only

on the visit statistics of the random walk; for example,
w1
i ðfrjgÞ ¼ Vii. See the Supplemental Material [19] for a

derivation of this formula and explicit expressions for the
first few weighting factors, each of which are polynomials
of the visit numbers Vij. Equation (2) is equivalent to well-
known recursive relations for absorption time moments
[20], but this form enables the asymptotic analysis leading
to the results below.
The weighting factors have some convenient properties.

First, they appear to be non-negative: wn
i1i2���inðfrjgÞ ≥ 0

and increasing functions of each rj. We show the non-
negativity and monotonicity explicitly up to order n ¼ 4
[19] and conjecture these properties hold for all orders.
Second, the weighting factors appear to fall off exponen-
tially away from the diagonal. For constant rj ¼ r, this
exponential decay can be shown explicitly [9]. We con-
jecture that the same decay holds for arbitrary transition
probabilities frjg. The intuition is that the visits to state i
are uncorrelated with those to state j [for N ≫ 1 and
i − j ¼ OðNÞ], due to the Markov property.
The first universality class of birth-death Markov

chains we consider have normally distributed absorption
times. As an instructive special case, consider the process
bm ¼ 0, dm ¼ d, which visits each state exactly once
before absorption, waiting a time d−1 on average at each.

The time to absorption is simply T ¼ P
m EmðdÞ where

EmðdÞ is an exponential random variable. Since T is a sum
of identical random variables we expect it to be normally
distributed by the central limit theorem. Alternatively, the
cumulants of T are κn ¼ N=dn. In units of the standard
deviation the higher order cumulants vanish: κn=κ

n=2
2 ¼

N1−n=2 → 0 as N → ∞. Hence the distribution is asymp-
totically normal.
We might also expect this asymptotic normality to hold

for transition rates with mild state dependence: if bm þ dm
does not vary too much (we will give a precise condition
below), the absorption time is a sum of nearly identical
exponential random times. Similarly, for rm ¼ bm=dm > 0,
the system randomly walks back and forth, but as long as
rm < 1 the average number of visits to each state is finite.
Under either of these generalizations the distribution is
asymptotically normal.
To characterize more precisely which Markov chains

lead to normally distributed absorption times, we compute
the asymptotic form of the cumulants in Eq. (2) by
introducing two auxiliary Markov chains. These have the
same bi þ di as the original system, but bi and di are
adjusted so that the ratios are rj ¼ rmax or rj ¼ rmin, where
rmax¼ limN→∞max1<j<Nrj and rmin¼ limN→∞min1<j<Nrj.
In other words, we construct two Markov chains where the
time spent waiting in each state is identical to that for
the original system, but the odds of moving toward the
absorbing state are increased or decreased to be uniform.
Above we noted that the weighting factors wn in Eq. (2)

are increasing functions of rj. Thus, we can bound
the cumulants in our system by those for the auxiliary
Markov chains, κnðrmin; NÞ ≤ κnðfrjg; NÞ ≤ κnðrmax; NÞ.
The asymptotic form of κnðr; NÞ (where r is constant
across states) was computed in Ref. [9]; we summarize the
calculation in the Supplemental Material [19]. To nail down
the asymptotics of κnðr; NÞ we require the waiting times to
be “flat” in the following sense:

1

N

XN

m¼1

tm ∼ c max
1≤m≤N

tm; ð3Þ

where tm ¼ ðbm þ dmÞ−1 is the mean waiting time at state
m and c is a constant independent of N. In other words, the
mean waiting time htmi across all states is the same
asymptotic order as the maximum waiting time: the process
fluctuates at an approximately uniform rate across the entire
Markov chain, without spending a disproportionate amount
of time in any one state. Gaussian absorption times have
also been found in the continuum limit via the linear-noise
approximation, which removes state dependence from the
noise [21]. This approximation is similar to the condition
(3), which requires the noise amplitude bm þ dm to vary
only mildly across states.
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If Eq. (3) holds, then κnðr; NÞ ∼ cnðrÞfðNÞnN, where
fðNÞ ∼max1≤i≤Nðbi þ diÞ−1. Since these asymptotics hold
for r ¼ rmin and r ¼ rmax, it follows that κnðfrjg; NÞ ∼
cnðfrjgÞfðNÞnN as well.
With the asymptotic form of the cumulants established,

we analyze the shape of the distribution using the stand-
ardized cumulants κ̃n ¼ κn=κ

n=2
2 for n ≥ 2 (which are

rescaled so that the variance κ̃2 ¼ 1). Using the asymptotic
form obtained above, we find κ̃n ∼ c̃nN1−n=2. In particular,
κ̃n → 0 as N → ∞ for n > 2, so that the distribution
becomes Gaussian for large N (the cumulants past second
order vanish for normal distributions).
For finite N, the dominant correction to the normal

distribution comes from the nonzero skew κ̃3 ∼ c̃3=
ffiffiffiffi
N

p
.

The coefficient in this scaling depends on the ratios rj; in
the Supplemental Material [19] we compute a bound
on this coefficient, which is useful for estimating the
rate of convergence in applications. The ratio of the
standard deviation κ1=22 to the mean κ1 also scales like

κ1=22 =κ1 ∼ c̃1=
ffiffiffiffi
N

p
, similar to the skew. As the distribution

converges to the Gaussian, the relative width of the
distribution narrows at the same rate. To summarize, any
birth-death Markov chain that satisfies the “flatness”
condition, Eq. (3), and has an absorbing state toward
which the system flows on average (rj < 1) will have
asymptotically Gaussian distributed absorption times.
Our first example of a Markov chain with normally

distributed absorption times is a toy model with random
transition probabilities. Here we select bm þ dm uniformly
at random between 0.1 and 2 and rm uniformly at random
between 0 and 0.9, which satisfies the conditions described
above. This example shows that the transition rates need
not be smooth in m; systems with disordered transition
rates still belong to this universality class.
Next we study evolutionary game dynamics on a one-

dimensional ring [22,23]. Mutant and wild-type individuals
compete via the following dynamics: an individual is
chosen randomly, proportional to its (frequency dependent)
fitness. The selected individual gives birth to an offspring
of the same type, which in turn replaces a random neighbor.
The model runs until the mutation spreads to the entire
population.
Figure 1(a) shows simulation results for the random

transition system and the evolutionary game. Both display
the expected normal distribution. Interestingly, for the
evolutionary game, the normal distribution appears for a
wide range of parameters, while the mean absorption time
and absorption probability depend more intricately on
parameters [22,23].
Gumbel distributions, known for their role in extreme

value theory [24], also arise generically in absorption
processes. This second universality class is closely related
to the “coupon collector” problem in probability theory,
which asks the following: if there are N distinct coupons

and we are given a random one (with replacement) at each
time step, how long does it take to collect all N coupons?
The collection process displays a characteristic slowdown:
when nearly all coupons have been collected, it takes a long
time to acquire the final few because duplicates keep
getting selected. Erdős and Rényi showed that for large
N the time to complete the collection follows a Gumbel
distribution [25].
The coupon collector problem can be modeled using

Markov chains. Let m be the number of coupons missing
from the collection of N total coupons. The probability of
obtaining a new coupon (thereby decreasingm) ism=N and
the number of missing coupons never increases. Thus, the
coupon collection process is described by birth-death
dynamics with bm ¼ 0 and dm ¼ m=N. The linear decay
of the transition probability dm near the absorbing boun-
dary is the key feature that gives rise to the characteristic
slowdown. For this case the cumulants can be computed
exactly, κ̃n ¼ ðn − 1Þ!ζðnÞ=ζð2nÞn=2, and match those for a
Gumbel distribution. Similar to the Gaussian class above,
we find that the Gumbel distribution is preserved for
nonzero rm < 1 and nonlinear transition rates as long as
the linear decay is dominant near 0. Specifically, if
bm þ dm ¼ fðNÞm½1þOðm=NÞ�, with bαN þ dαN of

FIG. 1. Absorption-time distributions for (a) the random
transition matrix model (large black circles) and the evolutionary
game on a ring (small red circles), (b) SIS model (large black
circles), logistic model (small red circles), and autocatalytic
chemical reaction model (cyan triangles), (c) the well-mixed
evolutionary game, and (d) the process bm¼rdm¼rmp, for r¼0
and p¼0.3 (blue), p¼0.75 (orange), p ¼ 1 (green), and p ¼ 1.8
(red). The r ¼ 0.8 distributions are indicated by dotted lines
(when they differ from the r ¼ 0 counterparts). See Ref. [19] for
models and parameters. We used system sizes (a)–(b) N ¼ 500

and (c)–(d) N ¼ 1000 and simulated (a) 5 × 104, (b)–(c) 105, and
(d) 106 trials to measure the distributions, which have been
standardized to have zero mean and unit variance. In (c) the
distributions are a convolution of Gumbel distributions with
relative weighting s ≈ 0.73. Deviations from predicted normal
and Gumbel distributions in (a)–(c) are due to finite system size.
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order at least O½NfðNÞ� for any 0 < α ≤ 1, and if rm ¼
rþOðm=NÞ for large N, then the absorption-time distri-
bution is asymptotically Gumbel [26].
By bounding the cumulants (2), we show [19] their

leading order behavior for N ≫ 1 is dominated by the
states near 0, where the approximations bm þ dm ≈ fðNÞm
and rm ≈ r become asymptotically exact, so that

κnðfrjg; NÞ ∼ 1

fðNÞn
X

1≤i1≤i2≤…≤in≤N

wn
i1i2���inðrÞ
i1i2 � � � in

: ð4Þ

The factors fðNÞn set the timescale of the process but do
not affect the shape of the distribution (they cancel in
κ̃n ¼ κn=κ

n=2
2 ). Thus, we have shown that the cumulants are

asymptotic to those for a process with bm þ dm ¼ m and
bm=dm ¼ r. The absorption-time distribution for this proc-
ess can be computed exactly (see Ref. [14], Appendix B)
and approaches a Gumbel distribution as N → ∞ [19].
Therefore, any system with transition rates vanishing
linearly and ratios rj that approach a constant near the
absorbing boundary will fall into the Gumbel universal-
ity class.
As in the Gaussian class, the relativewidth of the Gumbel

distributions becomes small for N ≫ 1. In this case, how-
ever, the standard deviation-to-mean ratio scales like
κ1=22 =κ1 ∼ C1= lnN. On the other hand, the deviations from
the Gumbel cumulants decay like δκ̃n ¼ κ̃n − κ̃Gumbel

n ∼
CnN−1 lnN (see Supplemental Material, Sec. S3. A [19]
and Ref. [26]). Thus the distribution narrows very slowly
compared to the convergence to the Gumbel shape.
Therefore, in applications we expect to see the Gumbel
distribution appear before the fluctuations become
negligible.
Finally, if the transition rates vanish near the initial

condition N, scaling like bm þ dm ¼ f̃ðNÞðN −mÞ þ
O½ðN −mÞ2�, there will be another coupon-collection slow-
down at the beginning of the process. An identical analysis
to that above shows that the contributions from the two
coupon collection regions simply add together to give the
cumulants. The resulting absorption-time distribution is
therefore a convolution of two Gumbels, with one weighted
by s ¼ limN→∞ fðNÞ=f̃ðNÞ.
To illustrate the Gumbel universality class we use the

susceptible-infected-susceptible (SIS) model of epidemiol-
ogy [12], the logistic model from ecology [13], and an
autocatalytic chemical reaction model [16,17] (details in
Supplemental Material [19]). In each case the transition
rates decrease linearly near the absorbing state. For
example, in the SIS model, bm ¼ Λmð1 −m=NÞ and
dm ¼ m, where Λ is the infection rate.
Our simulations show that these models each have the

expected Gumbel distribution [Fig. 1(b)]. The distribution
is also insensitive to parameter choices (e.g., a Gumbel
appears in the SIS model for any Λ < 1).

If we study the aforementioned evolutionary game in a
well-mixed population, the transition rates vanish linearly
as m → 0 and m → N [19,27]. As discussed above, we
expect a convolution of Gumbel distributions with relative
weighting s given by the ratio of the linear coefficients at
these two boundaries. Figure 1(c) shows that this prediction
is borne out in simulations.
In addition to Gumbel and Gaussian classes, other

absorption-time distributions arise if the transition rates
have power-law decay: bmþdm¼ fðNÞmp½1þOðm=NÞ�.

FIG. 2. Absorption-time skew for the process bm ¼ rdm ¼ rmp

with r ¼ 0 (blue circles) and r ¼ 0.8 (red squares), plotted as a
function of the power-law exponent p. Skews were numerically
computed for N ¼ 105 using the recurrence relation approach
described in Ref. [9]. The black line shows the asymptotic skew
2ζð3pÞ=ζð2pÞ3=2 for r ¼ 0. The curves cross at p ¼ 1 where the
distribution is Gumbel, independent of r. For p ≤ 0.5 the skew
approaches zero and the distribution is Gaussian. The numerical
skew is slightly larger than expected for p≲ 0.6 due to finite size
effects.

FIG. 3. Generalizations to high-dimensional models and Mar-
kov chains with internal sinks. (a) Extinction-time distributions
for sleeping sickness predicted using a 17-dimensional compart-
mental model that was fit to case data from the Mosango (large
black circles) and Kwamouth (small red circles) regions of the
Democratic Republic of Congo (data from Ref. [3]). Mean
extinction times (measured from 2016) are approximately 9.5
and 31 yr for the Mosango and Kwamouth regions, respectively,
with standard deviations of 4.8 and 7.9 yr. Disease eradication
times approximately follow a Gumbel distribution (fit using the
mean and variance). (b) Simulations of the SIS, logistic, reaction,
and well-mixed evolutionary game models have exponential
absorption-time distributions (standardized to zero mean and
unit variance) if parameters are chosen so that the dynamics have
an internal sink state. For each case, we used N ¼ 50 and
simulated 106 trials. See Ref. [19] for model details and
parameters.
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For p < 1=2, the decay is sufficiently slow that the
normal distribution is maintained: the system still fluctuates
at an approximately uniform rate across states. On the other
hand, if p > 1=2 we find a generalized coupon collection
phenomenon giving rise to a family of skewed distribu-
tions. Slowdown near the boundary dominates the absorp-
tion process and the distribution is asymptotic to that
for the minimal model bm ¼ rdm ¼ rmp [19]. When
r ¼ 0 the cumulants can be computed analytically: κ̃n ¼
ðn − 1Þ!ζðnpÞ=ζð2pÞn=2 [5,8]. Figure 1(d) shows the
resulting distributions for a few values of p. Interestingly
for p ≠ 1, the shape of the distribution depends subtly on r.
Figure 2 shows the skew of these distributions as a function
of p, elucidating the transition from normal distributions to
the skewed family.
Beyond simple one-dimensional Markov processes, the

eradication-time distributions for African sleeping sickness
predicted by a 17-dimensional data-driven model [3]
closely resemble the Gumbel [Fig. 3(a)]. This result
suggests that the Gumbel distribution is also generic in
higher dimensions if the dynamics collapse onto a one-
dimensional slow manifold near absorption. Crucially,
although the distributions have converged to the Gumbel
shape, the fluctuations still matter: the probable extinction
times span years. The ratio between the standard deviation
and the mean is approximately 0.5 and 0.25 for the
Mosango and Kwamouth regions, respectively. Similar
results hold for a variety of high-dimensional systems.
Their dynamics are accurately approximated by birth-death
processes with transition rates that vanish as a power-law
mp near the boundary. Examples include evolutionary
dynamics on D-dimensional lattices (p ¼ 1 − 1=D) and
complex networks [5,8,28] as well as epidemics on net-
works [29].
In this Letter we have characterized universality classes

for absorption times in birth-death Markov chains. While
our results are formulated in terms of the transition rates bi
and di, we can also connect the shape of the absorption-
time distribution to the spectrum of the transition matrix.
Discussion and derivation of these results are provided in
the Supplemental Material, Secs. S2. B and S3. C [19].
Future work might focus on characterizing additional
universality classes beyond those studied here. For exam-
ple, simulations [Fig. 3(b)] show that exponential absorp-
tion-time distributions arise frequently in systems with an
internal sink state, toward which transitions are more likely
[30]. The emergence of the exponential distribution makes
sense intuitively: the system quickly settles into a quasi-
equilibrium mode around the sink, whose slow exponential
decay dominates the absorption process [31]. To our
knowledge, however, there is no rigorous classification
of this case. It would also be fascinating to investigate
whether there is a universal crossover between different
members of our family of absorption-time distributions. For
example, how do the distributions change if the transition

rates have mixed decay mp þ ϵmq? Understanding the
crossover scaling between these cases will enable the
classification for an even broader class of extinction-prone
Markov chains.
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