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Moiré materials formed in two-dimensional semiconductor heterobilayers are quantum simulators of
Hubbard-like physics with unprecedented electron density and interaction strength tunability. Compared to
atomic scale Hubbard-like systems, electrons or holes in moiré materials are less strongly attracted to their
effective lattice sites because these are defined by finite-depth potential extrema. As a consequence,
nonlocal interaction terms like interaction-assisted hopping and intersite exchange are more relevant. We
theoretically demonstrate the possibility of tuning the strength of these coupling constants to favor unusual
states of matter, including spin liquids, insulating ferromagnets, and superconductors.
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Introduction.—Moiré materials have emerged as an
attractive controllable platform to simulate and explore
quantum condensed matter [1–6]. The electronic structure
of moiré materials is accurately described by continuum
models with moiré spatial periodicity that can be engi-
neered to yield Bloch bands with controllable width [3] and
topology [7,8]. For moiré bilayers formed by transition
metal dichalcogenides (TMD), electrons in the valence
moiré band can experience triangular or honeycomb lattice
symmetry periodic potentials, depending on the TMD
monolayer constituents, and the closest commensurate
stacking arrangement. For small twist angles the low-
energy physics can correspondingly be described by either
a single-band or a two-band model with a locked spin-
valley pseudospin [3–6]. The emergent many-body phys-
ics, which is extremely sensitive to the flat-band filling
factor ν ¼ N=NM, can be modeled theoretically by adding
electronic interactions to the continuum band model
directly in momentum space [6,9] or by mapping the
minibands to generalized Hubbard models. (Here, N is
the number of electrons or holes and NM is the number of
moiré periods in the system.) Recent experiments in moiré
TMD homobilayers and heterobilayers have exploited the
possibility of tuning ν through large ranges with electrical
gates, discovering Mott [10,11] and quantum anomalous
Hall [12] insulating states at ν ¼ 1 and generalized Wigner
crystal states at several rational fractional fillings [13–15].
The appearance of Wigner crystal states establishes the
importance of long-range interactions in the many-body
physics of semiconductor moiré materials, which are
expected to enrich phase diagrams [9].
In this Letter, we show that off-diagonal in-site inter-

actions, often ignored in studies of Hubbard model physics,
play a significant role in determining the ground state
properties of semiconductor moiré materials. Starting from

continuum model Bloch states, we use a projection tech-
nique [16–18] to obtain Wannier functions of holes localized
on moiré superlattice sites. From theseWannier functions we
calculate generalized Hubbard model parameters, that we
use to derive a low-energy spin model description valid for
strong interaction strengths at ν ¼ 1. For small twist angles,
or equivalently large moiré lattice constants, the Wannier
orbitals are well approximated by the eigenstates of a
harmonic potential and therefore an on-site Hubbard model
description is justified. Decreases in the moiré lattice
constant or the modulation potential strength lead to overlaps
between the tails of Wannier functions localized on nearest-
neighbor lattice sites (see Supplemental Material [19]).
When significant, the overlap gives rise to enhanced non-
local interaction terms. In exploring their influence, we have
focused on the spin physics of Mott insulator states at ν ¼ 1.
Our main results are presented in Fig. 1. In Figs. 1(a)
and 1(b) we show Heisenberg model spin coupling constants
for a small twist angle with well-localized Wannier orbitals,
and for a larger twist angle with significant Wannier function
overlap between neighbors. As illustrated in 1(c), we find
that the nearest-neighbor interaction J1 changes sign as a
function of twist angle and background dielectric screening,
indicating the possibility of controlled tuning between
antiferromagnetic and ferromagnetic states. We confirm this
transition by finite size exact diagonalization calculations.
Hartree-Fock analyses of heterobilayers [20,21] and homo-
bilayers [8,22] have also identified a ferromagnetic phase as
a candidate ground state at ν ¼ 1 when dielectric screening
is weak. For larger twist angles, which are more relevant
experimentally, contributions of other two- and four-spin
terms become important in spin model descriptions of TMD
moiré materials. Our findings suggest strategies to create
unusual states, including ferromagnetic insulators, spin
liquids, and superconductors.
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Generalized Hubbard model for moiré TMDs.—We limit
our attention to TMD heterobilayers that form triangular
moiré superlattices and therefore permit a single-band low-
energy description with trivial topology. Assuming a
smooth potential limit [3], the continuum model that
describes the bilayer’s electronic structure depends only
on the moiré lattice constant aM, the modulation potential
strength Vm, and a single potential-shape parameter ψ (for
details on the continuum model see Supplemental Material
[19]). The continuum model can be mapped to a real space
lattice model, whose Hamiltonian is written in the most
general way as

H ¼ −
X

i;j;σ

tijc
†
i;σcj;σ þ

1

2

X

i;j;k;l
σσ0

Vσ;σ0
ijklc

†
i;σc

†
j;σ0cl;σ0ck;σ; ð1Þ

where c†i;σðci;σÞ creates (destroys) an electron at site i in
valley σ; i, j, k, and l are site labels, tij stands for the
hopping integral between sites i and j, and Vσσ0

ijkl is a two-
particle matrix element

Vσ;σ0
i;j;k;l ¼ hRi;RjjVjRk;Rli; ð2Þ

withRi the moiré lattice site positions. The Coulomb long-
range interaction is given by V ¼ e2=ϵjr1 − r2j and ϵ−1 is

the system’s dielectric screening from the surrounding
environment, which determines the interaction strength.
Since Vσ;σ0

i;j;k;l is invariant under global translations, we can
choose Ri ¼ 0. The largest matrix elements are the on-site
interactions U0 ¼ h0; 0jVj0; 0i, and two-center integrals
involving sites 0 and R. The latter include the nearest-
neighbor direct interaction U1 ¼ h0;RjVj0;Ri, intersite-
exchange X1 ¼ h0;RjVjR; 0i, assisted hopping
A1 ¼ h0; 0jVj0;Ri, and pair-hopping P1 ¼ h0; 0jVjR;Ri
matrix elements.
For single-particle potentials that are strongly attractive

on lattice sites, like those of atomic-scale ionic crystals,
Wannier functions are well localized, and nonlocal inter-
actions that require overlap between distinct Wannier
functions are usually negligible. In the intermediate case
of d-band electrons in an elemental transition metal crystal
Hubbard estimated thatU0∼20 eV,U1∼6 eV, A ∼ 0.5 eV,
and X, P ∼ 1=40 eV [23]. Because nearest-neighbor inter-
action terms can be reduced by screening, it is sometimes
justified to retain only U0, yielding the standard on-site
Hubbard model. In general, a less attractive potential has
more extended Wannier functions, modifying the relation-
ship between the various interaction terms. Nonlocal
interactions have been considered previously in extended
Hubbard model theories of polyacetylene [24–26], where
they enhance dimerization, and can produce a ferromag-
netic phase but only in parameter ranges that appear to be
unphysical. Because the assisted hopping interaction may
acquire a large multiplicative factor related to lattice
geometry, it can play a significant role even when much
smaller than U0, potentially causing pairing and leading to
superconductivity [27,28]. In the following, we address the
importance of nonlocal terms in twisted TMD heterobi-
layers, concentrating on their role in determining ν ¼ 1
ground state properties.
From eigenvectors and eigenvalues of the continuum

model’s topmost band we obtain Wannier functions local-
ized at moiré lattice sites and evaluate extended Hubbard
model parameters ti;j and Vi;j;k;l, shown as lines with dots
in Fig. 2, as described in [19]. As a consistency check,
we compare our extended Hubbard model parameters with
the ones obtained in the regime of large aM, where the
modulation potential minima can be approximated by a set
of harmonic potentials centered on moiré lattice sites [3]
and analytic control is possible. In this limit, the Wannier
functions are

ψRðrÞ ¼
�

1

πa2W

�
1=2

exp

�
−
ðr −RÞ2
2a2W

�
; ð3Þ

where aW ¼ κ1=4
ffiffiffiffiffiffi
aM

p
is the Wannier function width and

κ ¼ ℏ2=½16π2Vmm� cosð120°þ ψÞ� varies inversely with
modulation potential strength. In this approximation
aM ∼ a0=θ, with a0 the active layer’s lattice constant.
We find that the near-neighbor hopping amplitude is

FIG. 1. Spin model coupling constants of the Mott insulator
state at ν ¼ 1 for a heterobilayer at small twist angle (long moiré
length) (a) and at a larger twist angle (shorter moiré length) (b), as
a function of interaction strength ϵ−1. (c) Phase diagram of a
ν ¼ 1 twisted heterobilayer vs interaction strength ϵ−1 and twist
angle θ, indicating the antiferromagnet-ferromagnet transition
line. Color scale shows the magnitude of the first-neighbor
Heisenberg coupling J1. (d) Schematic illustrations of the
neighbor configuration for the various coupling constants pre-
sented in the upper panels (a) and (b). These calculations were
performed for a modulation potential with ψ ¼ −94° and Vm ¼
11 meV (see main text).
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t ¼ ℏ2
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�
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�
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−
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2m�κ1=2

�
1

4κ1=2
−

θ
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�
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�
−

a0
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�
; ð4Þ

while the most significant interaction matrix elements are

U0 ¼
π1=2e2ffiffiffi
2

p
ϵaW

∼
ffiffiffi
θ

p
; ð5Þ

U1 ¼
2e2I1ffiffiffi
π

p
ϵaW

∼
ffiffiffi
θ

p
I1; ð6Þ
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I2
I1
U1 exp

�
−

a2M
4a2W

�
∼

ffiffiffi
θ

p
I2 exp

�
−

a0
4κ1=2θ

�
; ð7Þ

X1 ¼ P1 ¼ U0 exp

�
−

a2M
2a2W

�
∼

ffiffiffi
θ

p
exp

�
−

a0
2κ1=2θ

�
; ð8Þ

with I1 and I2 integrals given in Supplemental
Material [19].
A comparison between the analytical expressions given

by Eqs. (4)–(8) and the results for extended Hubbard model
parameters obtained from numerical calculations as a

function of twist angle is provided in Fig. 2. For small
twist angles we see good agreement, as expected, while for
larger twist angles the harmonic approximation under-
estimates Wannier function tails, and therefore nonlocal
interaction strengths. Interestingly, we see in Fig. 2(c) that
the nonlocal exchange interaction X1 increases signifi-
cantly with twist angle, and in Fig. 2(d) that there is a range
of angles for which the assisted hopping amplitude A1

becomes negative. These qualitative differences between
the harmonic potential approximation and exact results are
expected since the lattice potentials in the former model
have unbounded strength, whereas the actual potential is
bounded, causing that for θ ≳ 2.0° the Wannier functions
are more extended and acquire negative tails [19].
Effective spin model.—To illustrate the qualitative impact

of nonlocal interactions on moiré Hubbard physics, we
focus on the spin physics of the Mott insulator states at
ν ¼ 1. The charge gap of the Mott insulators is set by the
U0 energy scale that makes double occupancy of any lattice
site energetically unfavorable. When U0 is larger than all
other energy scales, the Hubbard spectrum separates into
two branches, an upper branch with a large double
occupation weight, and a low-energy branch in which
charge is approximately frozen and is described by a spin
Hamiltonian

Heff ¼ J1
X

hi;ji
Si · Sj þ J2

X

hhi;jii
Si · Sj þ J3

X

hhhi;jiii
Si · Sj

þ
X

⋄J14½ðSi · SjÞðSk · SlÞ þ ðSi · SlÞðSj · SkÞ�

þ J24ðSi · SkÞðSj · SlÞ; ð9Þ

where the Si are spin operators and the summations are over
first nearest neighbors, second nearest neighbors, third
nearest neighbors, and ring clusters, respectively. The
coupling constants of the spin model can be expressed
in terms of the real space Coulomb matrix elements by
applying a cluster perturbation expansion [29] or equiv-
alently a Schrieffer-Wolff transformation [30] to the
Hamiltonian in Eq. (1), as detailed in Supplemental
Material [19]. We show that the dominant near-neighbor
coupling constant J1 ≈ 4ðt1 − A1Þ2=ðU0 −U1Þ − 2X1 has
independent contributions from two different mechanisms,
an antiferromagnetic superexchange contribution that is
inversely proportional to interaction strength, and a ferro-
magnetic direct exchange contribution that is proportional
to interaction strength. Because the two contributions
respond oppositely to changes in interaction strength, the
one that dominates can be changed by controlling the
dielectric constant ϵ of the surrounding material. Typical
results for the dependence of spin-model coupling con-
stants on ϵ−1 are shown in Figs. 1(a) and 1(b) for angles
θ ¼ 1.5° and θ ¼ 3.0°, respectively.

FIG. 2. Comparison between harmonic approximation (solid
black lines) and exact continuum model results (lines with dots)
for (a) hopping, (b) on-site (blue) and first-neighbor (dark red)
interactions, (c) assisted hopping, and (d) intersite exchange
interactions. Interaction parameters are plotted vs twist angle
(bottom axes) and vs moiré length (top axes). The insets provide
schematic illustrations of each process. These calculations are for
Vm ¼ 11 meV, ψ ¼ −94°, and ϵ ¼ 10.
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In Fig. 1(a) we see that for small angles or long moiré
periods, J1 is the dominant coupling constant. The many-
body ground state of the system is expected to be anti-
ferromagnetic for J1 > 0 and ferromagnetic for J1 < 0. To
demonstrate this behavior explicitly, we calculate the full
low-energy spectrum of the TMD bilayer by finite-size
exact diagonalization of the continuum model. Performing
ED directly in momentum space allows us to include all
long-range interactions. The evolution of the lowest eigen-
value with total spin quantum number S for θ ¼ 1.5°
and θ ¼ 2.5°, with respect to ϵ−1, is plotted in Figs. 3(a)
and 3(b) for N ¼ 9 and in Figs. 3(g) and 3(h) for N ¼ 16.
From these results we see that for the smaller angle the
ground state is a singlet when J1 > 0, as expected for an
antiferromagnetic state and that for the region where J1 < 0
the ground state is a ferromagnet. The spin structure factors
calculated in the antiferromagnetic phase, shown in
Figs. 3(c) and 3(i), show peaks at the corners of the
Brillouin zone, indicating a three-sublattice state, while
the structure factors in the ferromagnetic phase, shown in
Figs. 3(d) and 3(j), have a peak at γ, characteristic of a
ferromagnetic state. At larger twist angles the harmonic

approximation is not accurate and nearest-neighbor cou-
pling J1 is less dominant. In this case we also have a
ferromagnetic insulating ground state for large ϵ−1 and an
antiferromagnetic ground state for small ϵ−1 for both
system sizes, as can be seen from total spin S plots,
Figs. 3(b) and 3(h) and structure factors, Figs. 3(e), 3(f),
3(k), and 3(l). The region near where J1 changes sign is
now more complex, as can be observed from our finite-size
calculations. Although our ED calculations cannot deter-
mine the thermodynamic limit ground state in this regime,
it is clear that exotic spin states are likely to be abundant
close to the antiferromagnet-ferromagnet transition. Ring-
exchange terms J14 and J

2
4 become significant and may favor

spin liquid ground states [31,32] and the contributions from
J2 and J3 also suggest exotic spin states. In Fig. 1(b), as
interaction strength ϵ−1 increases, the superexchange cou-
plings J3, J2, J1 change sign from positive to negative
sequentially. In the region where J3 < 0 but J1 > J2 ≳ 0,
there is bound to be a point where−J1=J3 ¼ 9. Close to that
point, another antiferromagnetic spin configuration, the
stripe state [20,33], has a very similar classical energy to
the three-sublattice state, making quantum fluctuations
important in determining the ground state.
Discussion.—We have shown that nonlocal interaction

terms can be sizable in semiconductor moiré materials and
that they can have an important influence on electronic
properties, giving rise to moiré Mott-Hubbard ferromag-
nets, not expected in other systems described by Hubbard
models with only local interaction terms. Nonlocal inter-
actions become more prominent at larger twist angles and at
weaker moiré modulation, where a harmonic expansion of
the modulation potential near its minima fails to describe
the band Wannier functions (see Fig. 2), justifying the
methodology employed here. In the case of the Mott
insulator states that appear at moiré filling factor ν ¼ 1,
nonlocal exchange supplies a ferromagnetic contribution to
the near-neighbor interaction between spins that is com-
parable in strength to the antiferromagnetic superexchange
contribution, making sign changes in the total interaction
common over typical ranges of experimental parameters. In
particular, current WSe2=WS2 samples with aM ∼ 8 nm
[11,13–15] appear on the antiferromagnetic side of the
phase boundary and the competition with ferromagnetism
can be tuned in situ by varying the moiré modulation
strength, which mainly influences t1—using gate electric
fields [34,35] or pressure [36,37]—or background screen-
ing of electronic interactions, providing a promising
framework to confirm the phase transition in the future.
Our findings establish a strategy for engineering strongly
frustrated spin-Hamiltonians that are likely to host exotic
spin states.
In our explicit calculations we have considered only the

case of wave vector and frequency independent background
screening of the type produced by a thick surrounding
dielectric, but more general situations are also relevant.

FIG. 3. Transition from antiferromagnet to ferromagnet as seen
by exact diagonalization of the continuum model. The evolution
of the lower Hubbard band vs ϵ−1 for (a) θ ¼ 1.5° and
(b) θ ¼ 2.5°. Evolution of the lowest energy state for each S
vs ϵ−1 for (c) θ ¼ 1.5° and (d) θ ¼ 2.5°. Spin structure factors for
twist angle θ ¼ 1.5° in the antiferromagnetic (e) and ferromag-
netic (f) phases and for twist angle θ ¼ 2.5° in the antiferro-
magnetic (g) and ferromagnetic (h) phases. Axes in structure
factor plots are normalized by kθ ¼ 4π=

ffiffiffi
3

p
aM, the length of the

moiré reciprocal lattice vectors.
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(We have focused on a range of ϵ−1 values that is smaller
than what would be produced by screening by a surround-
ing h-BN dielectric alone (ϵ−1 ∼ 0.2), in anticipation of
additional screening by conducting gates and by virtual
transitions between flat and energetically remote moiré
minibands). Similar conclusions apply to more complex
moiré material states. For example, it has been established
experimentally that non-near-neighbor local interaction
terms Un are important in moiré TMD systems, and that
they give rise to insulating Wigner crystal states at many
fractional values of ν [13–15] (presumably these Wigner
crystal states would also appear in real crystals if it were
possible to change the electron density without introducing
disorder). The generalized Wigner crystal states also have
low-energy spin sectors whose interactions are more
complex than those of the ν ¼ 1 case considered here
but will have coupling constants that are tunable in sign
due to the competition between direct and superexchange
spin interactions, determining their magnetic properties.
Separately, in honeycomb lattice moiré materials
[7,8,12,21,38] spin physics can be entangled with topo-
logically nontrivial band mixing, adding another wrinkle to
the low-energy physics, opening the possibility of realizing
fractional Chern insulators. Finally, we remark that we have
focused here on the near-neighbor exchange nonlocal
interaction because it is particularly important at ν ¼ 1.
Other nonlocal interactions may play a more prominent role
at metallic filling factors. For example, it has been proposed
[27,39] that assisted hopping can trigger superconductivity.
All these issues deserve attention in future work.
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