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Inspired by the newly emergent valleytronics, great interest has been attracted to the topological valley
transport in classical metacrystals. The presence of nontrivial domain-wall states is interpreted with a
concept of valley Chern number, which is well defined only in the limit of small band gap. Here, we
propose a new visual angle to track the intricate valley topology in classical systems. Benefiting from the
controllability of our acoustic metacrystals, we construct Weyl points in synthetic three-dimensional
momentum space through introducing an extra structural parameter (rotation angle here). As such, the two-
dimensional valley-projected band topology can be tracked with the strictly quantized topological charge in
three-dimensional Weyl crystal, which features open surface arcs connecting the synthetic Weyl points and
gapless chiral surface states along specific Weyl paths. All theoretical predictions are conclusively
identified by our acoustic experiments. Our findings may promote the development of topological valley
physics, which is less well defined yet under hot debate in multiple physical disciplines.
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Introduction.—Valley electrons in two-dimensional (2D)
materials have sparked extensive attention in multidiscipli-
nary fields [1–16]. The discrete valley index, labeling the
degenerate energy extrema in the band structure, can be
viewed as a new controllable carrier of quantum information
when the intervalley scattering is negligibly weak, much like
the spin in spintronics. Many fascinating phenomena asso-
ciated with valley-contrasting electronic properties have
been reported [1–16], such as valley filtering and topological
valley Hall effect, which are paving the road for designing
novel modern electronic devices.
Inspired by the concept of valleytronics, the peculiar

valley physics has been migrated to metacrystals for
classical waves [17–44]. Besides the valley-locked bulk
transport [17,18,23,24], the marriage of the exotic valley
degree of freedom and metacrystals provides a simple yet
highly efficient recipe for realizing topological transport of
classical waves at the interface of distinct valley Hall
phases [19–44]. Markedly different from the traditional
waveguide states [45–47], the valley-projected interface
states can serve as the basis of designing integrated devices
with unconventional functions, given many exceptional
transport properties such as negligible backscattering to
sharp bending corners [19–44].
Valley Chern number (VCN),Cv, defined with an integral

of Berry curvature in individual valleys, serves as a key
physical quantity that universally characterizes the topologi-
cal valley transport in quantum [6–16] and classical [19–44]
systems, despite rather different mechanisms introduced for
valleyHall phase transition. For thewidely explored domain-
wall system formed by topologically distinct valley Hall
phases, the magnitude of their VCN difference across the

domain wall, jΔCvj, gives the number of valley-locked
interface modes. In most classical systems, Cv ¼ �1=2
and jΔCvj ¼ 1 [19–44], accounting for one pair of one-
dimensional (1D) time-reversal-related interface modes.
Nonetheless, an unambiguous VCN definition relies on
extremely localized Berry curvature in each valley [2],
and jΔCvj approaches 1 only in the limit of narrow band
gap; the deviation from 1 becomes serious for a system with
wide band gap (which is highly desired in real applications
[20]). Therefore, the band topology of such domain-wall
systems is subtle since there is no strict topological invariant
to establish bulk-boundary correspondence. Even worse, for
a singlevalleymetacrystal positioned in awave-impenetrable
uniform media (Cv ¼ 0), there is not any deterministic
knowledge of the presence of edge states, since the VCN
difference jΔCvj ≃ 1=2 does not contribute a (even approxi-
mate) bulk-boundary correspondence.
Here, we unveil the elusive valley-projected band top-

ology from a perspective inherent in three-dimensional
(3D) Weyl physics [48–59]. We consider acoustic valley
metacrystals (AVMs) and extensions can be made to the
other classical systems straightly. Our AVM consists of
rotable triangular scatterers in a triangular lattice, in which
the valley Hall phase transition can be realized by simply
rotating the anisotropic scatterers [Fig. 1(a)]. Weyl points
(WPs), isolated linearly crossing points in 3D band
structures, are synthesized in a virtual 3D momentum
space spanned by the physical dimensions plus the scat-
terer’s orientation degree of freedom [Fig. 1(b)]. Resorting
to the bulk-boundary correspondence established by the
strictly quantized WP charge, gapless “surface” states,
which emerge at the 1D edges of individual AVMs, are
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predicted along specific Weyl paths in the synthetic surface
Brillouin zone (BZ), as a faithful manifestation of the
global band topology for the parameter-tunable AVMs. The
physical interpretation is extended to the more popular
domain-wall system [19–44], which is synthesized as a
stacking of two oppositely charged Weyl crystals. All
theoretical predictions are unambiguously validated by
our acoustic experiments through measuring 1D edge/
interface states.
AVMs and synthetic WPs.—As illustrated in Fig. 1(a),

our AVM is constructed by a triangular lattice of rigid
triangular scatterers in air background. The lattice constant
a ¼ 17.2 mm, and the volume filling ratio of the scatterer
η ≃ 0.243. The orientation of the scatterer, characterized by
the angle θ with respect to y axis, enables a flexible control
over the spatial symmetry and band gap of the system. We
only consider θ ∈ ½−60°; 60°�, a rotation period of the
scatterer. Specifically, for θ ¼ �30°, the point group at
the BZ corner K (K0) features C3v symmetry owing to
the perfect match of the scatterer’s mirrors to those of the
triangular lattice. Apart from those special angles, the
mirrors are mismatched and the crystal symmetry reduces
to C3. As such, the 2D band structure of the AVM supports
a twofold linear degeneracy at K (K0) for θ ¼ �30°,

whereas it is lifted for a generic θ. This is exemplified
by the cases of θ ¼ 30° and 15° [Fig. 1(c)]. For brevity,
throughout this work the dimensionless frequency a=λ is
employed in the band structure, with λ being sound
wavelength in air.
Below we focus on the K valley and the physics of K0

valley can be inferred by time reversal. Notice that the band
gap closes linearly as θ approaches �30°, as shown in the
top panel of Fig. 1(d) by the angularly dependent band edge
frequencies at K. This suggests a signal of acoustic valley
Hall (AVH) phase transition [20], which can be captured by
a θ-dependent effective Hamiltonian derived from the k · p
perturbation method,

δHKðθÞ ¼ vDqxσx þ vDqyσy þ ΔgðθÞσz: ð1Þ

Here, vD is Dirac velocity of the AVM with θ ¼ �30°,
q ¼ ðqx; qyÞ measures the momentum deviation from K,
and σi are Pauli matrices. The sign of the band gap 2Δg,
determined by the frequency order of the oppositely rotated
valley vortex states [20], characterizes two distinct AVH
insulators. The effective Hamiltonian in Eq. (1) gives a
localized Berry curvature around K for the lowest band [2],

ΩðqÞ ¼ 1

2
Δgv2Dðv2Dq2 þ Δ2

gÞ−3=2: ð2Þ

Its integral over the K valley yields a Berry phase
π sgnðΔgÞ½1 − δ�, where the dimensionless quantity δ ¼
v−1D q−1c jΔgj > 0 characterizes the relative deviation of
Berry phase from the quantized value, π sgnðΔgÞ, and qc
is a momentum truncation resulted by the finite-sized BZ.
In the limit of zero band gap, the VCN for the K valley
CK ¼ 1

2
sgnðΔgÞ and the consequent VCN difference

between two distinct AVH insulators jΔCKj ¼ 1. This is
assumed in the literature for explaining the nontrivial
interface modes in domain-wall systems [19–44]. The
value of δ becomes notable with the increase of the gap
size, as checked by the simulations for our concrete AVM
systems [Fig. 1(d), bottom panel]. Physically, a sizable δ
makes the valley topology less well defined, giving rise to a
visible detachment of the interface modes from the bulk
projections. More details can be seen in Supplemental
Material [60].
The subtle valley topology can be tracked from a 3D

perspective of Weyl physics, if θ ∈ ½−60°; 60°� is linearly
mapped as an extra dimension of momentum, kz ∈ ½−π; π�.
Given the linearly closed band gap as θ → �30° (i.e.,
Δg ∝ Δθ, with Δθ being an angular deviation from �30°),
the degenerate Dirac points (DPs) pinning at the inequi-
valent 2D BZ corners can be viewed asWPs in the synthetic
3D momentum space [62–64], around which the disper-
sions are linear in all directions [48–51]. Accordingly,
the effective Hamiltonian in Eq. (1) turns out to be an
anisotropic Weyl equation,
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FIG. 1. AVMs and synthetic WPs. (a) 2D AVMmade of regular
triangular scatterers (white) in air background (blue). The rotation
angle θ defines the orientation of the anisotropic scatterers. (b) 2D
BZ and its 3D extension (with kz mimicked by θ). The DPs (black
spheres) in 2D evolve into WPs (color spheres) in the synthetic
3D BZ, where red and blue label their topological charges of �1.
(c) 2D band structures for the AVMs of θ ¼ 15° and 30°. (d) Top
panel: θ evolution of the band-edge frequencies at K, where the
sign of band gap (2Δg) distinguishes topologically distinct AVH
phases. Bottom panel: relative deviation of the Berry phase (δ)
plotted as a function of θ, which becomes notable in the case of
big band gap.
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δHw ¼ vDqxσx þ vDqyσy þ vzqzσz; ð3Þ

where vz ¼ Δg=Δθ and qz ¼ Δθ. For clarity, in Fig. 1(b) we
show the distribution of all WPs (color spheres) in the
synthetic 3D BZ, where the adjacent WPs carry opposite
charges �1 and thus the total charge is zero, as required by
the Nielsen-Ninomiya theorem. Physically, the WPs act as
3D monopoles of Berry curvature and enable many exotic
properties such as gapless surface states along specific
Weyl path and open Fermi arcs linking WPs [48–59].
Consequently, resorting to the strictly quantized WP
charges, we can globally track the topological valley
transport in individual AVMs with 3D Weyl topology.
Below, we start with the less explored single-crystal
systems [8,9,42] and then generalize our study to the more
popular domain-wall systems.
Gapless synthetic surface states.—Instead of directly

characterizing WP charges, we identify the Weyl topology
through detecting nontrivial surface states along specific
Weyl paths [59]. Figure 2(a) sketches a synthetic surface BZ
(SBZ) projected along the ky direction, in which the color
spheres label the projectedWPs. To unveil the global feature
of the surface dispersion in the synthetic SBZ, we simulate
the edge-projected spectra for a series of AVMs with

different θ values, which are truncated in the y direction
with rigid boundaries. [As illustrated in Fig. 3(a) below, we
consider the bottom edge only.] For clarity, Fig. 2(b) shows
the projected surface dispersion (orange surface) in one half
of the SBZ; the data for the left one half can be inferred from
time reversal. The nontrivial Weyl topology can be reflected
in a Weyl path encircling one projected WP [Fig. 2(a)].
Geometrically, the closed loop can be viewed as the
projection of a ky-directed tube in the synthetic 3D BZ,
through which a net Berry flux can be concluded from the
nonzeroWP charge inside the tube. Since the 2D subsystem
defined on the tube carries a well-defined Chern number,
topological surface states of specific chirality will emerge in
the tube-projected loop according to the bulk-boundary
correspondence [59]. In turn, we can identify theWP charge
by inspecting the surface dispersion along any closed loop
encircling the projectedWP. As an example, Fig. 2(c) shows
a synthetic surface spectrum extracted along a clockwise
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FIG. 2. Weyl path interpretation of the valley topology in rigid-
boundary systems. (a) Synthetic SBZ projected along the ky
direction, plotted with dimensionless momenta k̃x and k̃z. The
color spheres highlight the projections of synthetic WPs, and the
red circle specifies a Weyl path encircling one projected WP.
(b) Surface band (orange) plotted in the one half of SBZ. The blue
surfaces sketch the boundaries of projected bulk bands. (c) Pro-
jected band structure (red line) along the clockwise Weyl path,
which is characterized by the parameter k̃l ¼ 0 ∼ 1 scaled with
circumference. The blue-shaded areas are bulk projections.
(d)–(f): Similar to (a)–(c), but for the projection along the kx
direction. Note that the projected WPs at K1 (K2) and K̄0

1 (K̄
0
2) are

overlapped now. In contrast to (c), the surface states in (f) are no
longer gapless since the Weyl path encircles a pair of oppositely
charged WPs.
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FIG. 3. Observations of the gapless chiral surface states and
open surface arcs in synthetic momentum space. (a) Schematic of
a rigid-boundary sample used for measuring 1D edge states along
the x direction. The green star highlights the sound source near
the bottom edge (black line). (b) Measured (color scale) and
simulated (yellow line) edge dispersions for the AVM with
θ ¼ 0°. (c) Measured (open circles) and simulated (black line)
surface bands along a rectangular loop centered at K̄2 in the kx-kz
SBZ (inset). Each circle corresponds to the peaked frequency for
a given surface momentum. (d) Experimental evidence for the
topological surface arcs at the synthetic WP frequency f ¼ 0.507.
(e) Similar to (c), but for a loop in the ky-kz SBZ (inset).
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circular loop (of dimensionless radius 1=8) centered at K̄2.
Clearly, it shows one gapless surface band (red line)
connecting the upper and lower bulk bands. In particular,
the surface band exhibits a positive slope, a faithful
manifestation of the topological charge þ1 for the WP
locating atK2. By contrast, we have also studied the surface
dispersion projected along the kx direction [Figs. 2(d)–2(f)],
simulated for a series of AVMs with y-directed rigid
boundaries. In this case, no gapless surface band can be
observed for any closed loop, since each pair of oppositely
chargedWPs are projected to the same point in SBZ. This is
illustrated in Fig. 2(f) for a circular loop centered at K̄2

(overlapped with K̄0
2). Note that the global connectivity of

the surface band is irrelative to the selection of boundary
details, in contrast to the remarkable boundary sensitivity of
the edge states reflected in original 2D systems [60].
Acoustic experiments for rigid-boundary systems.—

Acoustic experiments were performed to verify the syn-
thetic Weyl topology. To map out the surface states in the
synthetic SBZ, 1D edge states were detected for a series of
2D boundary-truncated samples at an angular step of 5°.
Figure 3(a) sketches our experimental setup. To excite
the edge states, a pointlike sound source was located at the
middle of the sample’s bottom edge. We scanned the
pressure distributions along the edge and attained the edge
spectra by performing 1D Fourier transform (see more
details in [60]). Figure 3(b) shows an example by θ ¼ 0°
(associated with a maximal band gap). As a direct mani-
festation of lacking bulk-boundary correspondence in
individual sample, the measured edge band (bright color),
which captures well the simulation result (yellow line),
does not traverse the whole bulk gap. (It is consistent with
the fact that no net Berry flux threads through a constant kz
plane if considering from a viewpoint of the 3D Weyl
crystal.) Repeating the measurements for the samples of
different θ, we obtain the global information of the sur-
face states in the synthetic SBZ. Figure 3(c) shows the
data (open circles) extracted along a rectangular loop
(of dimensionless size 4

15
× 1

2
) centered at K̄2. (Note that

here the rectangular loop was used to reduce the number of
2D samples, since only one sample is required for each
segment of horizontal path.) As expected, the surface
dispersion features a single gapless chiral band with an
overally positive slope. Without data presented here, a
surface band of opposite chirality was identified for a loop
encircling K̄0

2 [60]. Another hallmark inherent in the Weyl
physics is the presence of open surface arcs that link the
oppositely charged WPs. This was confirmed in Fig. 3(d),
the synthetic surface dispersion extracted at the WP
frequency, f ¼ 0.507. Similar experiments were performed
for the samples with y-directed edges. In contrast, no
gapless surface band can be observed for any closed loop in
the synthetic ky-kz SBZ, because of the neutralized WPs
with opposite charges. This is exemplified by a rectangular
loop of size 2

5
× 1

2
in Fig. 3(e).

Extensions to domain-wall systems.—The Weyl path
interpretation of the valley physics can be extended to the
widely explored domain-wall systems [19–44]. As sketched
in the left panel of Fig. 4(a), the domain-wall system is
formed by a pair of topologically distinct AVH insulators,
whose scatterer orientations are related by themirror parallel
to the x axis. In other words, the twoAVMs can be described
by coordinate systems of opposite chirality. After introduc-
ing the additional θ degree of freedom, we obtain a 3D
domain-wall system formed by two oppositely charged
Weyl crystals [Fig. 4(a), right panel]. Given the charge
difference between them, in contrast to Fig. 2(c), each
Weyl path enclosing K̄2 will host two gapless domain-wall
states of the same chirality, according to the bulk-boundary
correspondence. This is numerically exemplified in Fig. 4(b)
by a circular path of dimensionless radius 1=8. Again, the
conclusion does not rely on the structure details of the
domain wall, in contrast to the structure-sensitive interface
dispersion exhibited in individual samples [60].
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FIG. 4. Domain-wall systems. (a) Schematics of the 2D
domain-wall system (left) and its synthetic extension to 3D
(right). (b) Interface dispersion simulated along a circular Weyl
path centered at K̄2 (inset). (c) Measured (color scale) and
simulated (yellow line) interface dispersion for a domain-wall
system formed by the AVMs with θ1 ¼ 0° and θ2 ¼ 60°.
(d) Measured (open circles) and simulated (black line) interface
bands along a rectangular Weyl path centered at K̄2 (inset).
(e) Measured and simulated isofrequency contour at the Weyl
frequency.

PHYSICAL REVIEW LETTERS 128, 216403 (2022)

216403-4



To confirm our theoretical prediction, we performed
experiments like those of rigid-boundary systems, where
the sound source was positioned in the middle of the
domain wall. Figure 4(c) exemplifies the measured 1D
interface dispersion for a 2D domain-wall system formed
with AVMs of θ1 ¼ 0° and θ2 ¼ 60°. Comparing with the
above single crystal case [Fig. 3(b)], the interface
dispersion almost connects the upper and lower bulk
projections, under the perfectly matched interface configu-
ration (which is widely used in exploring topological valley
transport). The detachment of the interface modes from
bulk will become notable for a system with a bigger bulk
gap or a system with small Dirac velocity [60]. To
experimentally identify the global connectivity of the
interface states exhibited in synthetic Weyl topology, we
repeated the interface measurements for a sequence of
domain-wall samples and extracted the interface modes
along a rectangular loop centered at K̄2. As expected, the
data presented in Fig. 4(d) exhibit two gapless chiral
interface bands. Furthermore, we extracted the interface
states at the Weyl frequency. As shown in Fig. 4(e), the
number of the surface arcs is doubled compared with Fig. 3
(d), as a consequence of the doubled Weyl charge differ-
ence in this system. All experimental data reproduce our
simulations precisely.
Conclusion.—We have proposed a 3D understanding

for the 2D valley topology of metacrystals by constructing
synthetic WPs. Both the rigid-boundary and domain-wall
systems are considered in a unified framework. The
theoretical prediction has been experimentally validated
by measuring gapless edge (interface) states along
specific Weyl paths and open surface arcs linking oppo-
sitely charged WPs. Our findings can be extended to
the other classical (and even quantum) systems, if an
appropriate parameter is selected to construct synthetic
WPs. Novel applications would be enlightened by the
deepened and global understanding to the subtle yet
fundamental topological valley physics. Last but not
the least, our study provides a concrete example that
unveils intricate high-dimension band topology through
easily controllable low-dimension physical systems
[62–73]. In fact, similar methodology can also be
employed to construct synthetic WPs with larger charges,
e.g., by introducing a modulation degree of freedom to
Kekulé lattices [74–78].
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