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Analogous to the spin-Hall effect (SHE), ab initio electronic structure calculations reveal that acoustic
phonons can induce charge (spin) current flowing along (normal to) its propagation direction. Using the
Floquet approach we have calculated the elastodynamically induced charge and spin pumping in bulk Pt
and demonstrate that (i) the longitudinal charge pumping originates from the Berry curvature, while the
transverse pumped spin current is an odd function of the electronic relaxation time and diverges in the clean
limit. (ii) The longitudinal charge current is of nonrelativstic origin, while the transverse spin current is a
relativistic effect that to lowest order scales linearly with the spin-orbit coupling strength. (iii) Both charge
and spin pumped currents have parabolic dependence on the amplitude of the elastic wave.
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Introduction.—One of the primary objectives in the field
of spintronics is the development of efficient means to
generate pure spin current, which can be in turn used to
manipulate the magnetization configuration and damping
rate in magnetic based memory bits [1], spin transistors
[2,3], antennas [4], and sensors [5]. Generating spin current
in materials with strong spin-orbit coupling (SOC) through
the spin Hall effect [6] (SHE), i.e., the transverse spin
current generation by electric field, has recently been the
focus of intensive research both theoretically and exper-
imentally [7,8]. The SHE is often parametrized by the
charge-to-spin current conversion efficiency, referred
to as the spin-Hall angle, ΘSH, whereby the spin current
is given by I⃗S⃗ ¼ ðℏ=2eÞΘSHI⃗C × e⃗S⃗. Here, e⃗S⃗ is the spin

polarization unit vector and I⃗C is the charge current.
Experimentally, the conventional approach to quantify
ΘSH is through spin-orbit torque measurements in ferro-
magnetic–normal-metal bilayer devices [9–15].
Another commonly used mechanism to generate dc spin

current is the spin pumping from a precessing ferromagnet
(FM) into an adjacent normal metal (NM) [16–20]. The
generated spin current flowing through the FM/NM inter-
face is IS⃗ ¼ ðℏ=4πÞg↑↓e⃗S⃗ · m⃗ × ∂m⃗=∂t, where m⃗ and g↑↓
denote the direction of the magnetization and the spin-
mixing conductance, respectively. g↑↓ is often determined
experimentally through the change of Gilbert damping in
the presence and absence of the normal metal adjacent to
the FM [21]. In addition, other approaches, such as the spin
polarization effect in magnetic tunnel junctions [22,23], the
spin Seebeck effect [24–27], spin pumping from magnons
excited in response to elastic waves [28,29], and spin
current pulses produced by the ultrafast laser induced
demagnetization process [30,31] have also been proven
to be promising for the generation of spin currents in
spintronic devices.

Recently, a different approach to generate spin current
was demonstrated experimentally in X=CoFeB=MgO
(X ¼ W; Pt;W) heterostructures where the spin current
emerges from the lattice dynamics in strong spin-orbit
nonmagnetic metals (Pt, W), and flows transverse to the
propagation direction of the surface acoustic wave [32].
This is similar to the conventional SHE where the spin
current propagates orthogonal to the electrical current. To
account for the experimental results Kawada et al. sug-
gested [32] that the spin current must scale with the SOC
and the time derivative of the lattice displacement along the
wave propagation direction. The suggested plausible mech-
anisms of the generation of acoustic spin Hall effect include
a dynamic change in the Berry curvature of electron wave
function induced by the time-dependent lattice displace-
ment giving rise to a Berry electric field [33,34], and/or
SOC-mediated spin-lattice coupling resembling the Rashba
Hamiltonian [35]. Nevertheless, the underlying atomistic
mechanism remains unresolved.
In this Letter, using ab initio based electronic structure

calculations we reveal the emergence of a dc charge (spin)
current in response to acoustic phonons in heavy metals
(Pt), shown schematically in Fig. 1(a), where the spin
current flows transverse to the phonon propagation direc-
tion. We demonstrate that the phonon-induced spin current
is a relativistic effect arising from the SOC where, to the
lowest order, depends linearly on the SOC strength.
Analogous to the SHE, the spin polarization orientation
is orthogonal to both the spin current and phonon propa-
gation directions. We show that the phonon-induced charge
(spin) current saturates (diverges) in the limit of ballistic
transport regime. This is in sharp contrast to the electric
field-induced charge (spin) current where the correspond-
ing longitudinal (transverse) conductivity saturates
(diverges) in the clean system limit.
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Theoretical formalism.—In the linear response regime
the electronic Hamiltonian of a bulk system under a time-
and position-dependent strain, ϵijðR⃗; tÞ (i; j ¼ x; y; z), is
given by [36,37]

Ĥ ¼ Ĥ0 þ 1

2

X
ij

½Ĥijϵ̂ijðtÞ þ ϵ̂ijðtÞĤij�: ð1Þ

Here, bold symbols denote matrices in real space, hat
symbols denote matrices in atomic orbital Hilbert space,
Ĥ0 is the Hamiltonian in the absence of strain, Ĥij ¼
∂Ĥ=∂ϵijjϵij→0 is the deformation Hamiltonian term associ-
ated with the coupling between electrons and local strain,
½Ĥ�R⃗;R⃗0 ¼ ĤR⃗−R⃗0 , R⃗; R⃗0 are the positions of the unit cells, and
the time- and position-dependent local strain is a diagonal
matrix with elements given by ½ϵ̂ij�R⃗;R⃗0 ¼ 1̂ϵijðR⃗; tÞδR⃗;R⃗0.
Equation (1) assumes that spatial variation of strain is
adiabatic and hence ignores the dependence of the
Hamiltonian on the gradience of strain. For a single phonon
mode of wave vector q⃗ and frequency ω we have

ϵijðR⃗; tÞ ¼ Reðϵq⃗ijeiωtþiq⃗·R⃗Þ. In this case, the time and posi-
tion dependence of the Hamiltonian can be removed by

applying a gauge transformation, ½Û�NM ¼ δNM1̂eiNωtþiNq⃗·R⃗,
where the capital letters, N and M refer to phonon states.
The resulting time-independent system is referred to as the
Floquet space, where the corresponding Hilbert space is
extended to include the phononic degrees of freedom, with
the total Hamiltonian given by

½Ĥk⃗�NM¼Ĥ0

k⃗þNq⃗
δNMþ1

2

X
ij

T̂ij

k⃗;N
ϵq⃗ijðδN;Mþ1þδN;M−1Þ; ð2Þ

where T̂ij

k⃗;N
¼ 1

2
ðĤij

k⃗þNq⃗
þ Ĥij

k⃗þðNþ1Þq⃗Þ, N;M ¼ 0;…; Nph,

and Nph is the cutoff for the number of phonons. The hybrid
electron-phonon Hamiltonian is shown schematically in
Fig. 1(b), where the additional dimension is introduced to
account for the singlemodephononic degree of freedom.The
dependence of the quasiparticle chemical potential on the
number of phonons results in a quasiparticle transport along
the auxiliary direction which describes the attenuation of the
singlemode elasticwave through electron-phonon scattering
[38]. In this case, due to the conservation ofmomentum, both
electrons and holes are dragged along the phonon propaga-
tion direction, whereby systems with electron-hole asym-
metry experience a net pumped charge current. This
mechanism of pumping is, in essence, similar to the phonon
drag effect that gives rise to an enhancement of Seebeck
coefficient which is often treated theoretically using coupled
electron-phonon Boltzmann transport equations [39].
For an isolated system, the wave function of the coupled

electron-phonon system is of the form jNαk⃗i¼jNi⊗ jαk⃗i,
where, ⊗ refers to the Kronecker product, and α denotes
the atomic orbitals and spin of the electron Bloch states.
The single quasiparticle retarded Green’s function and the
corresponding density matrix can be obtained from [38,40]

ρ̂k⃗ ¼
η

π

Z
dEĜk⃗ðEÞfðE1̂ − Ω̂ÞĜ†

k⃗
ðEÞ; ð3Þ

where the Green’s function is calculated from

ðE − iη − Ĥk⃗ − Ω̂ÞĜk⃗ðEÞ ¼ 1̂: ð4Þ

Here, ½Ω̂�NM ¼ NℏωδNM1̂, is the single mode phononic
Hamiltonian, fðEÞ is the Fermi-Dirac distribution function
and η ¼ ℏ=2τ is the energy broadening parameter which is
inversely proportional to the electronic relaxation time τ.
Using the density matrix given by Eq. (4), the charge and
spin currents are determined from,

I⃗ ¼ eh ⃗v̂k⃗i; ð5aÞ

I⃗Si ¼ ℏ
2
Rehσ̂i ⃗v̂k⃗i; ð5bÞ

where, h…i ¼ P
k⃗ Tr½…ρ̂k⃗�=ðVNkNphÞ is the expectation

value, V is the volume of the unit cell,Nk is the number of k

points in the summation and ⃗v̂k⃗ ¼ ∂Ĥk⃗=∂k⃗ is the electronic
group velocity operator. In the ballistic regime and in linear
response to the phonon frequency, ω, the density matrix is
given by

ρ̂k⃗ ≈ fðĤk⃗ þ Ω̂Þ þ η

π
Ĝk⃗ðEFÞΩ̂Ĝ†

k⃗
ðEFÞ: ð6Þ

The first and second terms in Eq. (6) are referred to as the
Fermi sea and Fermi surface contributions, respectively.

FIG. 1. (a) Schematic of the elastodynamically induced charge
and spin current in bulk heavy metal under a time- and position-
dependent strain ϵxxðR⃗; tÞ ¼ Reðϵq⃗xxeiωtþiq⃗·R⃗Þ, of wave vector q⃗
along the x direction. The charge current propagates along q⃗,
while the spin current flows (along z) orthogonal to the phonon
and spin-polarization (y) directions. (b) Floquet space represen-
tation of the combined electron-phonon system. The phononic
part consists of a single mode with wave vector q⃗ and a cutoff
number, Nph, of phonons. The Nth layer represents the electronic
system with HamiltonianH0

k⃗þNq⃗
and chemical potential μþ Nℏω

that is coupled to the other electronic systems with different
number of phonons through the electron-phonon coupling matrix,
Tij

k⃗;N
, i; j ¼ x, y, and z.
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The Fermi surface contribution to the density matrix and
the resulting pumped charge and spin currents can be
separated into even and odd components with respect to η

(or relaxation time), ρ̂even=odd
k⃗

¼ ½ρ̂k⃗ðηÞ � ρ̂k⃗ð−ηÞ�=2. To

lowest order, the even (odd) component is expected to
be independent of (inversely proportional to) η, demon-
strating its Berry- (Ohmic-)like character (see
Supplemental Material [41]).
The Berry curvature nature of the even component of the

charge current can be further demonstrated by rewriting the
charge pumping expression as the Berry curvature in mixed
time-k space (see Supplemental Material [41])

I⃗even ¼ 2e
VNkNph

X
nk⃗

fðεnk⃗ÞIm
�∂ψnk⃗

∂k⃗
����Û† ∂

∂t Û
����ψnk⃗

�

¼ 2e
VNkNph

X
nk⃗

fðεnk⃗ÞRe
�∂ψnk⃗

∂k⃗
����Ω̂

����ψnk⃗

�
; ð7Þ

where, we use perturbation theory to express, j∂ψnk⃗=∂k⃗i¼P
mð ⃗̂vÞnmjψmk⃗i=ðεnk⃗−εmk⃗−iηÞ, with ⃗v̂nm;k⃗ ¼ hψnk⃗j ⃗v̂jψmk⃗i

being the group velocity matrix elements, and the energy
broadening parameter, η, is introduced to avoid divergences
at the degenerate points. The wave function, jψnk⃗i and
energy dispersion, εnk⃗ are the eigenvectors and eigenvalues

of the Floquet Hamiltonian, Ĥk⃗, respectively. The Berry
curvature(even) component of the pumped spin current can
be calculated from an expression similar to Eq. (7), by

replacing the charge current operator e ⃗v̂ with the spin

current operator given by the Hermitian part of ℏσ̂i ⃗v̂=2.
Furthermore, it should be noted that in systems with small
band gap at the Fermi surface, the topological nature of
Eq. (7) can yield quantized values (i.e., independent of
elastic wave amplitude), where electrons and holes are
trapped and dragged by the elastic wave, resulting in the so-
called Thouless pumping [42,44].
Computational approach.—The tight-bindingHamiltonian

Ĥk⃗ matrices for bulk Pt under different values of strain, ϵij,
are calculated using the linear combination of atomic
orbitals OpenMX package [45–47]. For a nonmagnetic
material, the one-electron Kohn-Sham Hamiltonian can
be expressed by [38,48,49]

Ĥk⃗ðfϵijgÞ ¼ ĤK
k⃗
ðfϵijgÞ1̂2×2 þ ξĤsoc

k⃗
ðfϵijgÞ; ð8Þ

where, the first term represents the kinetic component of the
Hamiltonian, the second term is the SOC contribution, and ξ
is the corresponding scaling factor. The effect of strain ϵij
is to modify the primitive lattice vectors a⃗0i such that
ða⃗0i − a⃗iÞ · e⃗j ¼

P
k a⃗i · e⃗kϵkj, where the e⃗j’s denote unit

vectors in Cartesian coordinates. The electron-phonon
coupling terms in Eq. (1) are calculated by fitting Eq. (8)
to a polynomial function, and in turn calculate

Ĥij

k⃗
¼ ∂Ĥk⃗=∂ϵijjϵij→0. The self-consistent (SCF) calcula-

tions employ the Troullier-Martins type norm-conserving
pseudopotentials [50] with partial core correction. The
equilibrium lattice constant of bulk Pt was set to
a ¼ 3.96 Å. In the SCF calculations we used a 243 k-point
mesh in the first Brillouin zone, and an energy cutoff of
350 Ry for numerical integrations in the real space grid. For
the exchange correlation functional the LSDA [51] para-
metrized by Perdew and Wang [52] was used.
Results and discussion.—Table I lists the values of the

even and odd contributions to the elastodynamically
induced components of the pumped charge, I⃗, and spin
current, I⃗Si , divided by the acoustic phonon frequency ω (in
units of 1010=eΩm2), for q⃗ ¼ ð�0.01; 0; 0ÞðÅ−1Þ, strain
amplitude ϵq⃗xx ¼ 10−3 and η ¼ 0.01 eV. The charge current
is an even function of η and is parallel to the elastic wave
propagation direction I⃗kq⃗ while the spin current is an odd
function of η and propagates normal to q⃗ and the spin

polarization direction, I⃗S⃗ke⃗S⃗ × q⃗. Figure 2(a) displays the
calculated pumped charge (dashed curve) and spin (solid
curve) currents versus the wave vector of the elastic wave

propagating along x, respectively, with ϵq⃗xx ¼ 10−3 and
η ¼ 0.01 eV. Both charge and spin currents are odd
functions of the wave vector with a linear dependence
on qx close to the Γ point. This is analogous to the electric
field-induced charge and spin current, where the external
electric field is replaced with ℏωq⃗=e. The difference,
however, is that in contrast to the Ohmic (spin-Hall)
currents that are odd (even) functions of the relaxation
time, the phonon-induced charge (spin) current exhibits
even (odd) dependence on η.
The slope of the pumped charge and spin currents with

respect to qx in the limit of qx → 0, describes the efficiency
of the phonon-induced electronic transport in the material.
Hence, in Fig. 2(b) we show the variation of the elasto-
dynamically induced charge current Ievenx =qxω and the spin

current I
Sy;odd
z =qxω versus ðϵq⃗xxÞ2. The calculations reveal

that both the charge (dashed curve) and the spin current

TABLE I. Values of the even and odd contributions to the
elastodynamical-induced components of the pumped charge I⃗,
and spin current I⃗Si , divided by the acoustic phonon frequency ω,
(in units of 1010=eΩm2), for phonon wave vector q⃗ ¼
ð�0.01; 0; 0ÞðÅ−1Þ and strain amplitude ϵq⃗xx ¼ 10−3.

Even Odd

i ¼ x y z x y z

Iiðq⃗Þ=ω �80 0 0 0 0 0
ISxi ðq⃗Þ=ω 0 0 0 0 0 0

I
Sy
i ðq⃗Þ=ω 0 0 0 0 0 ∓0.7

ISzi ðq⃗Þ=ω 0 0 0 0 �0.7 0
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(solid curve) vary quadratically with the amplitude of the
elastic wave for a wide range of strain. These results
suggest that the strain dependence of the elastodynamically
induced pumped charge and spin currents can be written in
the general form,

I⃗ðq⃗Þ=ω ¼ q⃗
X

i≤j;k≤l
γchij;klϵ

q⃗
ijϵ

q⃗
kl; ð9aÞ

I⃗S⃗ðq⃗Þ=ω ¼ ℏ
2e

e⃗S⃗ × q⃗
X

i≤j;k≤l
γspij;klϵ

q⃗
ijϵ

q⃗
kl; ð9bÞ

where, γchij;kl and γspij;kl are the elastodynamical longitudinal
charge conductivity (ELCC) and elastodynamical transverse
spin conductivity (ETSC), respectively. Given, ϵij ¼ ϵji, in
order to avoid double counting we consider only strains with
i ≤ j. One can then use the Voigt notation (½1; 2; 3; 4; 5; 6�≡
½xx; yy; zz; yz; xz; xy�) to represent the γch=spij;kl tensor elements
as a 6 × 6 symmetric matrix.
The variation of the ELCC versus the broadening energy

η is shown in Fig. 2(c) for phonon cutoff number, Nph ¼ 5

and 10. We display the variation of the total ELCC and its
Fermi surface contribution, where the former is determined
from Eq. (7), while the latter is calculated from Eq. (5)

where the density matrix is given only by the second term
in Eq. (6). We find that in the limit of the ballistic regime
(η → 0), the ELCC saturates to a finite value. On the other
hand, in the limit of large η (diffusive regime), while the
ELCC becomes independent of Nph, the deviation between
the total and Fermi surface contribution becomes more
significant, due to the fact that Eq. (7) is derived and hence
valid in the small η limit. The inset in Fig. 2(c) shows the
dependence of ELCC on the SOC scaling factor with a
finite value in the absence of SOC, demonstrating its
nonrelativistic nature.
Figure 2(d) shows the variation of the odd component of

ETSC (only the Fermi surface contribution) versus η for
Nph ¼ 5 and 10. In contrast to the expected 1=η depend-
ence, we find that in the limit of η → 0 the ETSC is
proportional to η and reaches a peak with increasing η.
The peak ETSC value increases with Nph, and the corre-
sponding ηmax decreases with increasing Nph, suggesting
that ETSC ∝ η=ðN−1

ph þ cη2Þ, where c is a constant. This
means, a larger phonon cutoff number is required to
converge the ETSC value in the clean limit (small η limit).
The inset in Fig. 2(d) shows the ETSC versus the SOC
scaling factor ξ demonstrating its relativistic nature, which,
analogous to the SHE, to lowest order in ξ, is proportional
to the SOC strength. It is worth noting that the non-
monotonic dependence of ETSC and its sign reversal with
SOC for small η suggests that in heavy metals (with large
SOC) such as Pt a perturbative treatment of ETSC with
respect to SOC may fail. Interestingly, the results of ETSC
versus SOC shown in Fig. S1 in the Supplemental
Material [41] for larger η of 0.5 eV exhibits a monotonic
behavior.
Thus far, we have focused only on the elastodynamically

induced pumping in response to a longitudinal elastic wave,
ϵxxðR⃗; tÞ. In the following we present the results for the
nonzero matrix elements of the 6 × 6 elastodynamical
charge or spin conductivity matrix. The values of the
diagonal matrix elements for the even component of the
ELCC matrix (in units of 109=eΩm) for q⃗kx and
η ¼ 25 meV, are γchii ¼ ½1.5; 2.5; 2.5; 0.8; 1; 1�, (i ¼ 1, …,
6), while those of the off-diagonal matrix elements are
γch12 ¼ γch13 ¼ −0.6, and γch23 ¼ −2.4, where γch=spij ¼ γch=spji .
Note that similar to the elastic stiffness and magnetoelastic
tensor elements [53], the symmetry of the crystal structure
for the elastodynamical electronic transport reduces the
number of independent tensor elements. However, the
difference is that the elastic wave propagation along the x
axis breaks the cubic symmetry and the ELCC matrix
elements resemble those of a tetragonal system instead.
Similar calculations for the ETSC (in units of 107=eΩm)

with spin current along the z axis and spin polarization
along the y axis, yields that the nonzero diagonal elements
are γspii ¼ ½3.5; 2.6;−0.6; 2; 0.5;−0.4� and the off-diagonal
elements are γsp12 ¼ −3.3, γsp13 ¼ −1.6, and γsp23 ¼ 1.6.
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FIG. 2. (a) Elastodynamical pumped spin (left-hand ordinate)
and charge (right-hand ordinate) current divided by the phonon
frequency ω versus the phonon wave vector q⃗ along the x axis

with strain amplitude ϵq⃗xx ¼ 10−3 and energy broadening param-
eter η ¼ 10 meV. (b) Efficiency of the elastodynamically induced
spin current, ISy;oddz =qxω, (left-hand ordinate) and charge current,
Ievenx =qxω, (right-hand ordinate) in the limit qx → 0, versus the

square of the strain amplitude, ðϵq⃗Þ2xx, where ϵq⃗xx ranges between
0% and 1%. (c) Total (stars) and Fermi surface (circles) con-
tributions to the ELCC versus η for Nph ¼ 5 and 10 shown with
solid and dashed curves, respectively. (d) Fermi surface contri-
bution to the ETSC versus η for different values of Nph. Insets in
(c) and (d): ELCC and ETSC versus SOC scaling factor for
η ¼ 0.1 eV.
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Note that all of the nonzero elements of ETSC are
independent, similar to the elastic stiffness matrix elements
of an orthorhombic crystal structure. This is due to the fact
that the choice of the spin current direction along z renders
the yz plane (i.e., normal to q⃗ke⃗x) anisotropic.
As demonstrated in the Supplemental Material [41], the

underlying mechanism of the phonon-induced pumping
can be attributed to the electron-hole asymmetry, which
results in a negative (positive) sign for ELCC when the
transport is electron-(hole-)like. The derivative of density
of states (DOS) with respect to the energy can be employed
to qualitatively determine the sign of the phonon-induced
charge pumping. We find a correlation between ELCC,
ETSC and the derivative of DOS as a function of chemical
potential shift (see Fig. S2 in Ref. [41]), suggesting that the
ETSC may be explained by the phonon drag charge current
combined with the spin-Hall effect.
An approximate value of the experimental ELCC can be

determined from I⃗ ≈ ωq⃗γcheffϵ
2
eff , using the measured values

[32] of pumped charge current, I ¼ 7.5 × 103 ðA=m2Þ, in
response to an elastic wave with frequency ν ¼ 193 MHz,
wavelength, λ ¼ 20 μm, and strain amplitude ϵeff ≈ 0.01%
[54]. An effective value of ELCC, γch;expeff ≈ 1012 ð1=eΩmÞ
is then estimated, which is near the upper limit of the
theoretical value in Fig. 2(c), corresponding to the clean
limit, η → 0. A more accurate comparison with experiment
requires taking into account all ELCC tensor elements.
Moreover, the spin current calculated in this work accounts
only for the conventional bulk component and neglects the
spin torque [55,56] and the FM/NM interfacial [48]
contributions that are both quadratic in SOC and are
higher-order corrections to the conventional SHE [57].
Therefore, a proper comparison with experiment requires
calculations of the elastodynamical spin orbit torque in
bilayer systems. It should also be noted that the relaxation
time approximation is reliable only in the small η limit,
since the limit of large η violates conservation laws,
resulting in a smaller pumped spin current [38,58].
In conclusion, we have developed a Floquet-based

approach using density functional theory and demonstrated
the emergence of charge and spin currents induced by an
acoustic phonon in bulk Pt. The calculations unveil the
underlying atomistic mechanism of the recently discovered
acoustic spin Hall effect in strong spin-orbit metals [32].
We find that the pumped charge (spin) current flows along
(normal to) the phonon wave vector, and is of nonrelativ-
istic (relativistic) origin. It is worth mentioning that the
phonon-induced pumped charge and spin current effect
presented in this Letter can be generalized to other
bosonic excitations (e.g., magnons, photons, etc.) and their
combinations.
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