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In this work, we theoretically study the heat flow between two 1þ 1D chiral gapless systems connected
by a point contact. With a small temperature gradient between the two, we find that the ratio between
fluctuations of the heat current and the heat current itself is proportional to the scaling dimension—a
universal number that characterizes the distribution of the particles tunneling through the point contact. We
adopt two different approaches, scattering theory and conformal field theory, to calculate this ratio and see
that their results agree. Our findings are useful for probing not only fractional charge excitations in
fractional quantum Hall states but also neutral ones.
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Introduction.—The flow of charge in an electric circuit is
not continuous due to the discrete nature of the charge
carriers. Similarly, we expect that the energy or the heat
flow in the system will be comprised of “lumps” of energy
associated with each carrier. In 1918, Schottky investigated
the noncontinuous character by measuring electric current
fluctuations in a vacuum tube [1]. In these tubes, the current
flows by Poisson processes of independent and rare
electron emission events from the tube filament. The
properties of the Poisson distribution indicate that the ratio
between the variance of the electric current and the average
current is equal to the electric charge emitted by a single
event the electron charge. Namely, FC ¼ SC=2IC ¼ e�,
where SC, IC, and e� represents charge noise, charge
current, and charge of the system, respectively.
There is a clear physical distinction between electric

current and heat current: while in each random emission
event the charge is fixed, the energy carried by the emitted
carrier is not. Furthermore, the probability of emission itself
may depend on the energy. The ratio between fluctuations
in the electric current and the average electric current has
long been used to infer the charge of carriers [2–5].
Analogously, it stands to reason that the ratio between
the fluctuations in the heat current and the average heat
current can be utilized to infer properties of the energy
distribution of the emission events. In this Letter, we show
that this is indeed the case. In particular, the quantum
number that can be extracted from these measurements is
the scaling dimension of the emitted quasiparticles, h.
We study the heat flow between two 1þ 1D chiral

gapless systems connected by a point contact. Canonical
examples of such systems are the edges of two-dimensional
systems subjected to a strong magnetic field in the frac-
tional quantum Hall (FQH) regime. Quasiparticles which
tunnel between the edges carry charge, as well as energy.
Much experimental progress has been made recently in heat
current measurement of FQH states, including non-Abelian

phases [6–11]. Theories of FQH states predict the charges
of the quasiparticles e� as well as the scaling dimension h
of the operator creating a quasiparticle [12–14]. In certain
simple cases, for example at ν ¼ 1=3, there is a simple
relation between h and, θ, the exchange statistics phase of
the quasiparticles, via eiθ ¼ e2πih. The scaling dimension
also determines the exponent of the power law of the
effective tunneling amplitude as a function of energy
[15,16]. Previous attempts to measure the scaling dimen-
sion focused on measuring these power laws through the
charge current [17–19].
We calculate the average heat current which tunnels

through a quantum point contact (QPC), IE, as well as the
fluctuations of the heat current, SE. When the temperature
difference between the two edges,ΔT, is much smaller than
the temperature of the cold edge, T, we find that the ratio
between the two is

FE ¼ SE
2IE

¼ ð4hþ 1ÞkBT; ð1Þ

where kB is the Boltzmann constant. This universal result is
valid also for charge-neutral particles and demonstrates the
importance of the scaling dimension in governing the
energy distribution of excitations along the edge. We
emphasize the difference between this regime and the
shot-noise regime typically used to extract quasiparticle
charge [2–5], which requires a large bias voltage V ≫ T
between the two edges.
In the rest of the Letter we will prove Eq. (1) and show

that it holds for generic interacting edge modes described
by conformal field theory (CFT) [20]. We extend these
results beyond the small-ΔT regime described in Eq. (1),
obtaining a closed integral expression for the heat current
and heat current fluctuations for general values of TL and
TR. We focus on another limit of interest, tunneling from a
hot edge TL ¼ T to a cold edge TR → 0, in Eq. (9).
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A schematic demonstration of how quantum dots may be
used to probe the heat current fluctuations is given in the
Supplemental Material [21] A2 for noninteracting fer-
mionic states. Generalization to other cases requires more
delicate treatment in the spirit of, for example, Ref. [22],
which we leave for future works. There is subtlety when a
non-Abelian anyon tunnels through the QPC due to the
intrinsic entropy of each carrier. Therefore, in this work, we
focus on Abelian anyon tunneling, leaving the non-Abelian
cases for future works.
Scattering theory.—We begin with calculations for non-

interacting fermions and bosons, using the standard tool of
scattering theory. Focusing on the geometry of Fig. 1, the
heat current and heat current fluctuations measured at drain
1 are given by the standard formulas [23,24]

IE ¼ 1

h

Z
dERðEÞ½f�R − f�L �E; ð2Þ

S̃E¼
2

h

Z
dEE2f½2−RðEÞ�f�R ½1∓ f�R �

þRðEÞf�L ½1∓ f�L ��RðEÞ½1−RðEÞ�ðf�R −f�L Þ2g: ð3Þ

Here, f�R=L ≡ ½exp ðE=TR=LÞ � 1�−1 is the distribution
function for the right- and left-moving particles, with the
þ sign representing the Fermi-Dirac distribution for fer-
mions, and the—sign representing the Bose-Einstein dis-
tribution for bosons. The coefficient RðEÞ is the probability
for an incident particle of energy E to tunnel across the
QPC. The heat current and heat current fluctuations at D2

can be obtained by similar methods. We integrate Eqs. (2)
and (3) for a general scatterer obeying RðEÞ ¼ R0ðE=EcÞα,
where Ec ≫ Ti is a high-energy cutoff. As will be shown in

the following sections, for a standard QPC, we expect
α ¼ 4h − 2, where h is the scaling dimension of the
tunneling quasiparticle. This corresponds to α ¼ 0 for
fermions and α ¼ 2 for bosons.
We wish to use these quantities to probe the quasipar-

ticles which tunnel through the scatterer. As such, we focus
only on the excess heat current fluctuations, i.e., the noise
contribution that is obtained from a nonzero RðEÞ,
SE ≡ S̃E − S̃EjRðEÞ¼0. We then define the “heat Fano factor”
as the ratio between the excess heat current fluctuations and
the tunneling heat current, FE ≡ SE=2IE.
Calculating these integrals, we obtain the heat Fano

factor for two limits of interest. For nearby temperatures,
TR ≡ T, TL ¼ T þ ΔT, and small reflection R0 ≪ 1, we
obtain, for both fermions and bosons,

FE ¼ ðαþ 3ÞkBT: ð4Þ

The limit of TL ¼ T and TR ¼ 0 and further details are
relegated to the Supplemental Material A [21]. [See also
Eq. (9), where the same limit is considered in the CFT
approach].
CFT approach.—Now we turn to interacting cases by

considering the edge modes described by a CFT with
central charge c. We remark that, one can obtain the same
results by means of the standard bosonization formalism
instead of adapting the CFT approach. This is illustrated in
detail in the Supplemental Material B [21]. For simplicity,
in the following calculations, we will set ℏ ¼ kB ¼ 1. We
envisage the same geometry as the scattering theory
portrayed in Fig. 1, where there is a pair of counter-
propagating edge modes of a CFT, connected by a single
QPC. We denote the temperature of the right and left-
moving edge by TR=L, and introduce the QPC at the
coordinate x ¼ 0. Notice that we do not impose a potential
gradient between the two edges.
The Hamiltonian of this system is given by

H ¼ H0 þHT;

H0 ¼
v
2π

Z þ∞

−∞
dx½T þ T̄ �

HT ¼ Γ0ORð0ÞOLð0Þ: ð5Þ

Here, H0 describes kinetic terms consisting of the stress-
energy tensor T ðzÞ½T̄ ðz̄Þ� in the right [left] moving sector
with z ¼ iðvt − xÞ½z̄ ¼ iðvtþ xÞ� and v is the velocity of
the edge mode [20]. The term HT represents tunneling at
the QPC, and the tunneling entity is described by the
operator OR=LðzÞ with a tunneling amplitude Γ0. This
operator is a primary field of the CFT, with a scaling
dimension of hOR

¼ hOL
≡ hO [25].

We evaluate the heat current at the drain D1, which we
place at coordinate x ¼ d, at time t. The unperturbed heat

current is defined by Ið0ÞE ðtÞ ¼ ðv2=2πÞT ðd; tÞ [26]. To find

FIG. 1. A configuration of counterpropagating edge modes (red
arrows) of an integer quantum Hall state. The quantum point
contact (QPC), where quasiparticle tunneling occurs (green
dashed line), is located at x ¼ 0. The source and drain of the
right- and left-moving edge mode are respectively represented by
S1=2 and D1=2. Depending on the context, the edge modes can be
replaced with the ones of a fractional quantum Hall state with
filling fraction ν or with the ones of topological ordered phases
described by a conformal field theory.
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the correction to the heat current induced by the tunneling
at the QPC, we resort to linear response theory, assuming
the tunneling HT in Eq. (5) is perturbatively small and the
perturbation HT is turned on at time t ¼ −∞. One obtains
the perturbative expansion of the heat current operator up to
the second order of Γ0:

IEðtÞ ¼ Ið0ÞE ðtÞ þ Ið1ÞE ðtÞ þ Ið2ÞE ðtÞ þOðΓ3
0Þ; ð6Þ

where

Ið1ÞE ðtÞ ¼ i
Z

t

−∞
dt0

�
HTðt0Þ;

v2

2π
T ðd; tÞ

�
;

Ið2ÞE ðtÞ ¼ i2
Z

t

−∞
dt0

Z
t0

−∞
dt00

�
HTðt00Þ;

�
HTðt0Þ;

v2

2π
T ðd; tÞ

��
:

See the Supplemental Material C [21] for more details.
The unperturbed heat current Ið0ÞE ðtÞ is related to the heat

conductance via κ ¼ f½∂hIð0ÞE ðtÞi�=½∂TR�g ¼ ðπc=6ÞTR,
from which we can extract the central charge c of the
edge mode [7,8,26–28]. Since we are interested in excess
heat fluctuations driven by the quasiparticle tunneling,
throughout this work, we concentrate on the perturbative
corrections to the heat current and noise, i.e., the second
and third term in Eq. (6). Taking the expectation value of
these terms gives

hIð1ÞE ðtÞi ¼ 0;

hIð2ÞE ðtÞi ¼ −iΓ2
0

Z þ∞

−∞
dτGRðτÞ∂τGLðτÞ; ð7Þ

where we have introduced the correlator of the primary
field in the right- and left-moving sector at temperature
TR=L as GR=LðτÞ ¼ hOR=LðτÞOR=Lð0Þi. The scaling dimen-
sion enters as the power law of the correlator. At zero

temperature, this can be seen as GR=LðτÞ ∼ τ−2hOR=L .
When there is no temperature gradient between the

edges, hIð2ÞE ðtÞi vanishes [29]. In the presence of a small
temperature gradient between the two edge modes, i.e.,
TR ¼ T, TL ¼ T þ ΔT (jΔT=Tj ≪ 1), the heat current (7)

behaves as hIð2ÞE ðtÞi ∼ T4hO−1ΔT.
We proceed to calculate the heat current fluctuations. We

define these as

S̃EðωÞ ¼
Z þ∞

−∞
dt12eiωt12hfΔIEðt1Þ; IEðt2Þgi;

with ΔIEðtÞ ¼ IEðtÞ − hIEðtÞi and f� � � ; � � �g representing
an anticommutator. Expanding the heat current up to
second order in Γ0, as demonstrated in Eq. (6), yields [30]

S̃ðωÞ¼ Sð00ÞE ðωÞþSð11ÞE ðωÞþSð02ÞE ðωÞþSð20ÞE ðωÞþOðΓ3
0Þ:

Here, we have defined ði; j ¼ 0; 1; 2Þ

SðijÞE ðωÞ ¼
Z þ∞

−∞
dt12eiωt12hfΔIðiÞE ðt1Þ; IðjÞE ðt2Þgi:

The term Sð00ÞE ðωÞ gives the unperturbed heat current
fluctuations, and is an equilibrium property. Known also
as the so-called Johnson-Nyquist (JN) noise of the heat
current [31,32], it is related to the heat conductance κ in the

dc limit by Sð00ÞE ð0Þ ¼ 2κT2
R, which is addressed for non-

interacting cases in Ref. [24]. This relation is in line with
the one between the charge JN noise Sc and the charge
conductance G via Sc ¼ 2GT in the thermal noise limit.
We are interested only in the perturbative contributions

to the heat current fluctuations. We hence focus on the
excess heat current fluctuations, defined as SEðωÞ ¼
S̃EðωÞ − Sð00ÞE ðωÞ. The excess heat current fluctuations

are comprised of three terms. For Sð11ÞE ðωÞ, which repre-
sents the autocorrelations of the heat current which tunnels
at the QPC, it is straightforward to derive the form

Sð11ÞE ðωÞ ¼ −2iΓ2
0

Z þ∞

−∞
dτ cos ðωτÞGRðτÞ∂2

τGLðτÞ:

To evaluate the “cross terms” Sð02ÞE ðωÞ þ Sð20ÞE ðωÞ, corre-
sponding to the correlation between the unperturbed and
excess heat current, one has to calculate the correlator
involving the stress-energy tensor and the primary fields.
Such a task can be accomplished by exploiting the
conformal Ward identity [20], as outlined in the
Supplemental Material C [21]. Overall, the excess heat
current fluctuations in the dc limit ω → 0 are given by

SEð0Þ ¼ 4TRð2hO − 1ÞhIð2ÞE i

þ Sð11ÞE ð0Þ þ 2iTR
∂Sð11ÞE ðωÞ

∂ω
����
ω→0

: ð8Þ

We are now are in a good place to study the heat Fano
factor, defined by

FE ¼ SEð0Þ
2hIð2ÞE ðtÞi

:

The first term of Eq. (8) includes hIð2ÞE ðtÞi, therefore, the
heat Fano factor has the term proportional to the scaling
dimension which is a universal number. What remains to do
is to calculate the ratio between the last two terms of Eq. (8)

and hIð2ÞE ðtÞi.
It is challenging to evaluate this ratio analytically for

generic values ofTR=L. Instead of doing this, we focus on the
case of a small temperature gradient,TR ¼ T,TL ¼ T þ ΔT
(jΔT=Tj ≪ 1), and expand the last two terms in Eq. (8)
up to first order of ΔT=T. Relegating the details to the
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Supplemental Material C [21], and retrieving the
Boltzmann constant kB, the heat Fano factor becomes
FE ¼ ð4hO þ 1ÞkBT, which completes the proof of Eq. (1).
We extend our result to an additional regime of interest

with a large temperature gradient, by setting TR ¼ 0 and
TL ¼ T. In this case, the heat Fano factor is given by

FE ¼ ð2hO þ 1ÞðπkBTÞ
Jð2hO; 2Þ
Jð2hO; 1Þ

; ð9Þ

where we define the integral (see the Supplemental
Material C [21])

Jða; bÞ ¼
Z þ∞

−∞
dz½coshðzÞ�−a

�
i

�
z − i

π

2

��
−a−b

:

When hO takes integer or half-integer values, the integrals
of Eq. (9) can be explicitly calculated via contour integra-
tion. This includes two canonical cases: when hO ¼ 1=2,
corresponding to fermion tunneling, the heat Fano factor is
given by FE ¼ 3kBTf½ζð3Þ�=½ζð2Þ�g; when hO ¼ 1, which
corresponds to density-density interactions, we have
FE ¼ 4kBTf½ζð5Þ�=½ζð4Þ�g. Here, ζðsÞ is the Zeta function.
Interestingly, this result coincides with the one obtained
from scattering theory. The more general case is relegated
to Supplemental Material C [21].
Discussion.—We identify several advantages to focusing

on heat vs alternate approaches that have been proposed to
extract the scaling dimension from charge fluctuations
[33–36]. First, a crucial feature of the heat current meas-
urement is that it may probe not only charged excitations
but also neutral ones, as both of them carry heat. Heat
current measurement thus opens a new possibility to
provide us with smoking gun evidence for neutral topo-
logical order phases [37–39]. Indeed, experiments probing
the quantized heat conductance κ ¼ cðπkB=6ℏÞT, with c
being the central charge of the FQH edge mode, have been
successfully realized for both integer [6,7] and half-integer
[8,9] central charges, the latter hosted by non-Abelian
phases [40].
Second, charge current based measurements often

require bias voltages that are larger than the base temper-
ature. This, combined with the requirement that voltages
not exceed the bulk gap, limits the available temperature
range for measurements. Large bias voltages may further-
more lead to nonuniversal effects, such as changing the
confining potential at the edge and the electrostatic proper-
ties of the QPC, or enabling longitudinal conductance
through the bulk. Conversely, our method requires only
small temperature gradients, such that effects that may
mask the power law behavior of the tunneling are mini-
mized. Finally, probing power laws directly requires bias
voltages which span several decades, an issue which we
outright avoid.

Summary.—Recent decades have seen considerable
interest in noise as a means for extracting physical insight,
as opposed to an unfortunate byproduct of an imperfect
measuring apparatus. In the condensed matter community,
the ratio between the electric current fluctuations and the
average electric current has been used to extract the
quantized charge of carriers [2–5]. In this Letter, we
examine the ratio between the heat current fluctuations
and the average heat current, which we dub the heat Fano
factor. We refer the reader to further works discussing heat
current fluctuations in theoretical [41–44] and experimental
[45,46] contexts, as well as the references therein.
We demonstrate that the heat Fano factor for tunneling

between two gapless one-dimensional modes yields a
universal number. In particular, in the presence of a small
temperature gradient between the two edges, ΔT ≪ T, the
scaling dimension h of the tunneling quasiparticle is
immediately obtained from the heat Fano factor given in
Eq. (1). This property plays a crucial role in governing the
edge dynamics of the gapless edge excitations [14]. For
certain simple cases, such as Abelian theories with no
counterpropagating modes, the scaling dimension is
directly related to the statistical phase obtained by braiding
two quasiparticles, via θ ¼ 2πh.
For completeness, we also obtain closed integral expres-

sions for the heat Fano factor for two general edge
temperatures, which solely depends on the scaling dimen-
sion. If 2h is an integer, and the temperature of the cold
edge is zero, then this expression is reduced to fractions of
Zeta functions (see the Supplemental Materials B and C for
more details [21]).
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