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We develop a rigorous theoretical framework based on principles from statistical mechanics that allows
one to predict the equilibrium response of classical non-Hermitian arrangements in the weakly nonlinear
regime. In this respect, we demonstrate that a pseudo-Hermitian configuration can always be driven into
thermal equilibrium when a proper nonlinear operator is paired with the linear Hamiltonian of the system.
We show that, in this case, the system will thermodynamically settle into an irregular pattern that does not
resemble any known statistical distribution. Interestingly, this stable equilibrium response is associated
with a Rayleigh-Jeans law when viewed within an appropriately transformed space that displays unitary
dynamics. By considering a non-Hermitian Su-Schrieffer-Heeger chain, our results indicate that the
thermodynamic equilibrium will always favor the edge modes instead of the ground state, in stark contrast
to conventional nonlinear Hermitian configurations. Moreover, non-Hermitian lattices are shown to exhibit
unusually high heat capacities, potentially acting as optical heat reservoirs to other Hermitian systems, by
employing only a small number of sites and low power levels.

DOI: 10.1103/PhysRevLett.128.213901

In the last decade, optics has witnessed a renewal of
interest in non-Hermitian settings with the advent of now
highly adopted concepts emerging from theories like
parity-time (PT) symmetry [1,2]. This led to a theoretical
and experimental burst of activities that unraveled a host of
novel phenomena that have no counterpart in Hermitian
environments [3–13]. These include, for example, the
demonstration of the non-Hermitian skin effect, a process
that can arise due to the unique topological structure
associated with non-Hermiticity [14–25]. In recent years,
substantial effort has been devoted to pseudo-Hermitian
arrangements that can always be associated with non-
Hermitian Hamiltonians exhibiting completely real eigens-
pectra [26,27]. These configurations are endowed with a
richer set of properties, stemming from their ability to form
exceptional points in their parameter space [28–33]. The
unique set of attributes associated with pseudo-Hermiticity
have been explored in a variety of photonic settings
[34–36].
The interplay between nonlinearity and non-Hermiticity

can lead to a wealth of novel optical phenomena in a variety
of photonic settings. Over the years, it has been systemati-
cally explored, mainly within the context of optical solitons
[37–39], in various amplifying systems governed by
Ginzburg-Landau equations as well as in pseudo-
Hermitian arrangements [40–48]. Meanwhile, a regime that
to this day remains largely unexplored emerges when
considering multimode non-Hermitian configurations under
weak nonlinear conditions, where intricate wave-mixing

processes are at play. In these settings, the analysis of their
dynamic response presents an utterly complex problem,
especially when hundreds or even thousands of modes are
involved. Consequently, the only pragmatic approach to
decipher the behavior of these configurations is by deploying
notions from thermodynamics and statisticalmechanics [49].
To this end, many challenges still remain, given that the
integrals of motion, a necessary ingredient for the develop-
ment of a thermodynamic theory [49–52], do not always
manifest themselves. Moreover, even pseudo-Hermitian
configurations can exhibit extreme instabilities under non-
linear conditions that may result in an exponential growth of
power and consequently the absence of an equilibrium
response [53,54].
To address these issues, in this Letter we pursue a dual

objective: (i) the classification of non-Hermitian systems
that can display thermalization, and (ii) the development of
a consistent theoretical framework for predicting their
modal occupancy distribution at equilibrium. Here, the
first objective will be carried out by developing a universal
set of rules that will dictate whether a classical non-
Hermitian system can be driven into thermal equilibrium.
In this respect, we focus on arrangements that can self-
thermalize in isolation, as opposed to open systems that
are coupled to a heat bath. Although, in principle, a non-
Hermitian system cannot be isolated due to gain and
dissipation effects, the intrinsic invariants that can manifest
themselves in these arrangements will be proven sufficient
in describing the thermalization process.
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In developing an optical thermodynamic theory for
nonlinear optical configurations, one must first define
two invariants of motion. In Hermitian systems, these
can be expressed using the projected amplitudes cn on
the linear eigenbasis as

P ¼
X

n

jcnj2; U ¼ −
X

n

εnjcnj2; ð1Þ

where n is the eigenmode index, εn represent the eigen-
values of the linear spectrum, P is the total physical power,
and U corresponds to the linear part of the total
Hamiltonian HT ¼ U þHNL (the nonlinear component
HNL is omitted in the weakly nonlinear regime). The
invariance requirement for P restricts the development of
such a thermodynamic theory only to conservative and in
extension fully Hermitian models. Therefore, for non-
Hermitian systems, one must identify new integrals of
motion. Such invariants are manifested in pseudo-
Hermitian arrangements due to their association with a
representation that displays unitary dynamics, a property
that is absent in structures with complex spectra.
We begin our analysis by first defining a generic pseudo-

Hermitian nonlinear system with a real eigenspectrum fϵng
described by the following equation:

i
dai
dt

¼ HL
ijaj þHNL

ij aj; ð2Þ

where the linear non-Hermitian Hamiltonian HL is accom-
panied by the nonlinear operatorHNL. This operator can be,
for example, Kerr nonlinear γjaij2 where, γ is normalized to
unity. Here, the system will be operated in the weakly
nonlinear regime by appropriately controlling the magni-
tude of the total optical power (P). The linear Hamiltonian
HL in Eq. (1) is associated with a biorthogonal basis jvi that
acts as a reciprocal space to the nonorthogonal eigenmode
basis jui.
We analyze this configuration by adopting a similarity

transformation Q (i.e., QðHL þHNLÞQ−1) that renders the
linear part of the Hamiltonian H0L ¼ QHLQ−1 into a fully
Hermitian operator. Such a transformation can always be
found for pseudo-Hermitian arrangements (such as a PT-
symmetric system in the unbroken phase), thus providing
an equivalent conservative representation that displays an
identical spectrum with the original non-Hermitian
Hamiltonian [26,27]. This property allows one to monitor
the underpinning dynamics in a Hermitian environment
where linear integrals of motion exist.
To observe thermalization in pseudo-Hermitian arrange-

ments one must first impose two additional necessary
conditions, beyond the emergence of the linear invariants.
The first is the presence of a physical mechanism that can
initiate the ergodic multiwave mixing process. Here, this
role is undertaken by the nonlinear operator HNL, which
can lead to chaotic evolution and hence thermalization—a

process that is enabled irrespective of the operator’s
particular structure. The second condition entails that the
linear invariants must persist after engagingHNL in Eq. (2).
For this to be true, the nonlinear part of the transformation,
H0NL ¼ QHNLQ−1 must also correspond to a Hermitian
operator. Otherwise, one cannot establish a proper repre-
sentation associated with a unitary evolution under non-
linear conditions and the linear conserved quantities will no
longer manifest themselves.
To verify the validity of these claims, we begin by

examining two particular systems with a Kerr-type non-
linearity: a PT-symmetric one-dimensional chain of optical
elements and a non-Hermitian Su-Schrieffer-Heeger (SSH)
model with asymmetric couplings between nearest neigh-
bors (the real-space Hamiltonians are given in Note II of the
Supplemental Material [55]). A Kerr nonlinearity corre-
sponds to a Hermitian nonlinear operator with diagonal
elements given by jaij2 (before the transformation is
applied). A sufficient condition for preserving the
Hermiticity of QHNLQ−1 is for Q to be an orthogonal
matrix (QTQ ¼ QQT ¼ I). However, not both pseudo-
Hermitian systems can transform under an orthogonal
matrix, a property that, as we will see, restricts which of
the two configurations can exhibit thermalization.
In order to identify the presence of an equilibrium

response, it is necessary to analyze the time evolution of
various relevant quantities. In Fig. 1, we plot the time
dynamics of four quantities by exciting simultaneously 10
out of the 21 linear lattice modes (supermodes) in a lattice
with N ¼ 21 sites. These four quantities correspond to the
physical power P, the effective internal energy U, the
pseudo power Ps, and the pseudo energy Us. These two
pairs are defined according to Eq. (1) within the non-
Hermitian and Hermitian representation, respectively. In
particular the two Hermitian quantities can be expressed
according to Eq. (1) by Ps ¼

P
n jc0nj2 and Us ¼P

n εnjcn0 j2 via the Hermitian projected amplitudes c0n.
In the linear regime of Fig. 1(a), the physical power P

oscillates in both systems, an expected consequence of
pseudo-Hermiticity, while the transformed power Ps
remains constant as imposed by the underlying unitary
evolution of the Hermitian representation. This picture
changes when the Kerr operator is involved. In this case, the
PT-symmetric system oscillates in both the physical and
transformed representation while exponentially gaining
power as time progresses. On the other hand, the dynamic
evolution of the SSH non-Hermitian chain remains stable
for arbitrarily large times. These two different outcomes are
directly correlated to the properties of the transformation
matrix Q. In the case of the SSH chain, Q is an orthogonal
matrix (and in particular diagonal), in agreement with the
requirement imposed previously. The stability of the non-
linear SSH chain leads to a well-defined equilibrium state
for the average modal occupancy strengths as shown in
Fig. 1(d), for a lattice of N ¼ 21 sites. However, the
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distribution is not associated with any familiar form (for
example with the Rayleigh-Jeans distribution encountered
in optics [56]) and requires further investigation.
In what follows, we focus our study on arrangements

with anisotropic couplings due to the instability exhibited
by PT-symmetric systems that forbids thermalization under
Kerr-type nonlinearities. Nonetheless, the formalism that
will be laid herein will be applicable to any pseudo-
Hermitian configuration if one finds a proper nonlinear
operator that preserves Hermiticity under a similarity
transformation Q. In this respect, in Note IV of the
Supplemental Material [55], we outline a strategy that
allows one to properly identify such a nonlinear operator
and we showcase the emergence of thermalization and a
stable equilibrium response for the PT-symmetric chain of
Fig. 1(a). Therefore, we prove, in principle, that any
classical pseudo-Hermitian system can thermalize.

Having identified two integrals of motion we now seek
to derive an equilibrium distribution for the linear modal
amplitudes jcnj2. To this end, we begin in the Hermitian
representation and maximize the optical entropy defined by
S ¼ P

ln jc0nj2 subjected to the two constrains via the use
of Lagrange multipliers (see Note I in the Supplemental
Material [55]). This process results in a Rayleigh-Jeans law
for the average Hermitian modal amplitudes jc0nj, given by

hjc0nj2i ¼ −T=ðεn þ μÞ; ð3Þ

where the two intensive variables T and μ correspond to an
effective optical temperature and optical chemical potential
associated with Us and Ps respectively.
To derive an equilibrium distribution in the original

eigenbasis, we must first apply a reverse transformation on
the amplitudes jcnj. The modal occupancies between the
two representations are directly related via a matrix
operator, cn¼

P
mAnmc0m¼

P
mhvnjQ−1jumic0m. However,

the distribution given by Eq. (3) corresponds to a statistical
average and therefore cannot be treated directly in this form
due to emergent correlations between the modes.
Nonetheless, considering that a similarity transformation
preserves the eigenstructure of HL, the operator A reduces
always into a purely diagonal matrix (Anm ¼ 0,
Ann ≡ An ≠ 0). In this respect, a direct transformation of
Eq. (3) can be performed, resulting in a weighted Rayleigh-
Jeans law:

hjcnj2i ¼ −ð1=A2
nÞT=ðεn þ μÞ: ð4Þ

This equation provides a direct prediction of the average
modal occupancies for a pseudo-Hermitian system in the
weakly nonlinear regime, as expressed in the original
eigenbase. Likewise, the two integrals of motion can be
transformed to the original eigenbasis, acquiring the
following forms:

Ps ¼
X

n

A2
njcnj2; Us ¼ −

X

n

A2
nεnjcnj2: ð5Þ

The intensive variables T and μ can be calculated by
combining Eqs. (4) and (5) and the universal equation of
state that is given by Us − μPs ¼ MT, withM representing
the total number of lattice supermodes. In this respect, one
can always predict the equilibrium Rayleigh-Jeans distri-
bution for any initial excitation.
To validate this theoretical framework, we rely on

numerical simulations in the SSH non-Hermitian optical
chain of Fig. 1(b). The lattice comprises a total of N ¼ 21
sites with κ1 ¼ 1, κ2 ¼ 2, δ ¼ 0.4 and is truncated appro-
priately so that a pair of topological edge states emerges at
zero energy. In order to observe an equilibrium state, we
obtain the modal occupancies by averaging over 200
individual ensembles. Each ensemble corresponds to a
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FIG. 1. (a) A PT-symmetric configuration of optical cavities
with alternating gain and loss (κ ¼ 1, γ ¼ 0.1). During linear
evolution, the physical power oscillates and the pseudo power
now assumes the role of the invariant of motion. During nonlinear
evolution, no invariant can be identified and power is expected to
grow indefinitely. The time in figures is measured in inverse
coupling units. (b) An arrangement of optical cavities with
asymmetric couplings (κ1 ¼ 1, κ2 ¼ 2, δ ¼ 0.2). Two invariants
of motion (Ps and Us) are now present in both the linear and
nonlinear regime. (c) The linear eigenspectrum of the system in
(b). (d) The average power occupancies of the same system settle
into a stable equilibrium state in the original supermode basis.
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separate simulation run, initiated by a light excitation that
uniformly populates a continuous set of supermodes within
the Hermitian representation (in this example, all modes
with eigenvalues in the range −4 < ϵn < 1) albeit with
random phases. This enforces the same values for the two
invariants [Us and Ps of Eq. (5)] for each simulation run.
Alternatively, an equivalent result can be extracted via a
single simulation run, by averaging or sampling on the time
axis, a direct manifestation of ergodicity.
Figure 2(a) illustrates a comparison between the theo-

retically predicted and simulated averages of the linear
modal amplitudes at equilibrium for an initial state with
Ps ¼ 6 and Us ¼ −2. The projected amplitudes within the
linear mode basis are properly normalized at unity
(hvnjuni ¼ 1 and hunjuni ¼ 1). After a sufficiently long
evolution time, the numerical results relax into the
weighted Rayleigh-Jeans distribution of Eq. (4). In this
particular example, the weights 1=A2

9, 1=A
2
10 that corre-

spond to the two topological edge states acquire higher

values in relation to the bulk modes and as a result the edge
modes accumulate more power at equilibrium. This is in
stark contrast to conventional Hermitian systems where at
thermal equilibrium the fundamental (ground state) or
highest order mode is always favored for negative and
positive temperatures, respectively. Moreover, in Fig. 2(b)
we observe the evolution in the transformed representation
and verify the equilibrium response fully agrees with the
Rayleigh-Jeans law given by Eq. (3).
We next proceed to study a number of more intricate

examples.A straightforward extension of the simple non-
Hermitian SSH chain can be established by including
random anisotropy terms δn. Figure 2(c) verifies the corre-
spondence between the theoretically predicted and simulated
outcome at equilibrium, considering a lattice excitation with
Ps ¼ 6 and Us ¼ −1. Because of the randomness of δn on
the spatial axis, the weights An of Eq. (4) become irregular,
resulting in a Rayleigh-Jeans-like curve with strong noise.
Nonetheless, the prediction remains highly accurate. Next,
we consider a two-dimensional non-Hermitian lattice that
can exhibit a higher-order non-Hermitian skin effect [57].
We simulate a highly anisotropic case with coupling
parameters ðκ1 ¼ 1; δ ¼ 2; κ ¼ 1Þ and extract the equilib-
rium distribution of power among the linear modes of the
system. The continuous curve of Fig. 2(d) corresponds to the
theoretically predicted distribution and provides once again
an accurate estimate.
The previous examples showcased that a prediction of

the equilibrium response is attainable with high accuracy
but did not yet reveal the true nature of the intensive
variables T and μ. To provide further insight into this
aspect, we explore multilattice interactions, i.e., cases
where two or more lattices are allowed to optically interact
and therefore exchange optical energies Us. In Hermitian
systems, this process causes a relaxation to a common final
temperature in both lattices, an outcome consistent with
classical thermodynamics. In this respect we introduce an
additional nonlinear operator HCP to Eq. (2) that couples
two oppositely polarized lattices (with state vectors an and
bn) via cross-phase terms (HCP

a ¼ janj2bn, HCP
b ¼ jbnj2an)

(see Note V in the Supplemental Material [55]). The
matrices HCP and HNL are both diagonal, which simulta-
neously guarantees the Hermiticity of both the transformed
nonlinear QHNLQ−1 and cross-phase QHCPQ−1 operators.
In the example of Fig. 3, we illustrate a comparison

between two cases: a Hermitian-to-Hermitian and a non-
Hermitian-to-Hermitian square lattice pairing. In either
case, both lattices comprise a total of 50 elements and
interact on the first and last row of sites that they share in
common. We excite all four lattices with the same physical
power P ¼ 0.5 and different Us corresponding to distinct
optical temperatures. Figures 3(c) and 3(d) display the
temperature variation over a long period of time until a
common value is attained. In the non-Hermitian-to-
Hermitian pairing, the final value for T ends up much closer
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FIG. 2. (a) A nonlinear non-Hermitian SSH chain with κ1 ¼ 1,
κ2 ¼ 2, and δ ¼ 0.2 reaches equilibrium in the original linear
modal basis that matches a weighted Rayleigh-Jeans distribution.
(b) The jc0nj2 magnitudes in the Hermitian representation settle
into a regular Rayleigh-Jeans distribution. The blue shaded areas
denote the initial distribution, which is chosen to be uniform in
the Hermitian-projected space. (c) Equilibrium state of the SSH
chain with κ1 ¼ 1, κ2 ¼ 2 and random δn terms sampled
uniformly from [0, 1] (d) The modal occupancies are precisely
predicted for a 2D lattice with anisotropic couplings (κ1 ¼ 1,
κ2 ¼ 2, κ ¼ 1, and δ ¼ 0.5) employing 3 unit cells (36 sites)
through the corresponding Hermitian lattice.
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to the non-Hermitian system’s original value. This effect is
directly correlated to an unusually large optical heat capacity
exhibited by the non-Hermitian system (defined by
C ¼ ∂Us=∂T), a measure that demonstrates the amount of
internal energy exchange required for an infinitesimal
variation of temperature. Figure 3(f) displays the heat
capacity of the two lattices, over the temperature range
½−0.7; 0.7�, revealing a large difference in magnitude
between the two curves, an indication that a similar variation
in temperature requires a much larger change for Us in the
non-Hermitian lattice. Essentially, a non-Hermitian system
can potentially act as an optical heat reservoir to a secondary
optical system by employing the same number of sites but a
much lower power level to an equivalent all-Hermitian heat
bath configuration.
In this Letter, we developed a theoretical framework

capable of describing thermalization dynamics over a broad
range of nonlinear non-Hermitian systems with on-site
nonlinearities. Within this context, one may explore differ-
ent non-Kerr or even nonlocal nonlinear operatorsHNL that
may allow thermalization in a wider class of pseudo-
Hermitian configurations.
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