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Sorting quantum fields into different modes according to their Fock-space quantum numbers is a highly
desirable quantum operation. In this Letter, we show that a pair of two-level emitters, chirally coupled to a
waveguide, may scatter single- and two-photon components of an input pulse into orthogonal temporal
modes with a fidelity ≳0.9997. We develop a general theory to characterize and optimize this process and
reveal that such a high fidelity is enabled by an interesting two-photon scattering dynamics: while the first
emitter gives rise to a complex multimode field, the second emitter recombines the field amplitudes, and the
net two-photon scattering induces a self-time reversal of the input pulse mode. The presented scheme can
be employed to construct logic elements for propagating photons, such as a deterministic nonlinear-sign
gate with a fidelity ≳ 0.9995.
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Strong nonlinearity at the few-photon level is key to all-
optical quantum information processing (QIP) [1]. In the
last decade, quantum nonlinear optical phenomena have
been demonstrated on various platforms [2], including
cavity and waveguide quantum electrodynamics (QED) set-
ups [3], atomic ensembles [4], and optomechanics [5].
Following these experimental achievements, the next step
is to develop schemes that can utilize the acquired non-
linearity to perform high-fidelity QIP operations, such as
single-photon transistors [6], single-photon subtractors [7],
and photonic logic gates [8,9]. Among these quantum
devices, a photon sorter which can separate single- and
two-photon components of a single-mode input state into
orthogonal output modes is particularly useful [10–13].
Reference [11] thus proposed to employ the chiral coupling
to a two-level emitter and scatter a single-mode input pulse
into a field with the different number states occupying
different photonic temporal modes [14].
In this Letter, we establish a systematic approach to

evaluate and optimize the performance of photon sorting in
temporal-mode space. We find that the sorting by a single
emitter, proposed in Ref. [11], is hampered by a small but
finite occupation of undesired modes, while, for a suitably
optimized input pulse, the subsequent scattering on a
second emitter restricts the one- and two-photon states
to two orthogonal output modes with a very high fidelity
(see Fig. 1). Our theoretical approach identifies a novel
self-time-reversal mechanism of two-photon states by pairs
of emitters, and we verify that our optimal photon sorting is
robust against experimental imperfections. This makes it a
promising element in efficient Bell state analysis [10],

photonic controlled phase gates [11], as well as measure-
ment-based quantum computing [13].
Model.—We study a waveguide QED system, where an

incident pulse interacts with Ne two-level emitters in a
unidirectional manner (see Fig. 1 for Ne ¼ 2) [15–18]. We
focus here on the scattering of a single-photon state â†ϕj0i
and a two-photon state ðâ†ϕÞ2j0i=

ffiffiffi
2

p
, where â†ϕ ¼R

dkϕðkÞâ†ðkÞ creates a single photon in the input mode
ϕðkÞ. We assume a unit propagation speed, and â†ðkÞ is the
creation operator in wave number (and frequency)
space. The output states for the single- and two-photon
input are respectively given by

R
dkψðkÞâ†ðkÞj0i andR

dk1dk2Ψðk1; k2Þâ†ðk1Þâ†ðk2Þj0i=
ffiffiffi
2

p
, where the single-

photon pulse ψðkÞ ¼ T ðkÞϕðkÞ is modified by a linear
transmission coefficient T ðkÞ, while the two-photon wave
function Ψðk1;k2Þ¼

R
dp1dp2Sðk1;k2;p1;p2Þϕðp1Þϕðp2Þ

is governed by the scattering matrix S [19–22]. The
cascaded feature of the chiral waveguide QED system
allows us to obtain T ðkÞ and S from the transmission

)b()a(

FIG. 1. Sequential scattering of a single-photon pulse ϕðkÞ and
two-photon pulse Φðk1; k2Þ ¼ ϕðk1Þϕðk2Þ by a pair of chirally
coupled two-level emitters. (a) The linear dispersion of the single
photon component. (b) The nonlinear scattering of the two-
photon state into multiple modes and back to a single-mode
output.
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coefficient T 0ðkÞ and scattering matrix S0 solved for a
single emitter with T ¼ T Ne

0 and S ¼ SNe
0 . For simplicity,

we consider first the ideal case where photons are perfectly
scattered into the guided mode of interest, i.e., ψðkÞ and
Ψðk1; k2Þ have unit norm.
To coherently split the single- and two-photon compo-

nent of a superposed input state αâ†ϕj0i þ βðâ†ϕÞ2j0i=
ffiffiffi
2

p
,

we require the two-photon output Ψðk1; k2Þ to occupy
spatiotemporal modes which are orthogonal to the single-
photon output ψðkÞ [23–25]. To explicitly quantify such a
requirement, we need to expand the two-photon output
state in terms of the single-photon wave function. First, the
permutation symmetry of the bosonic wave function
Ψðk1; k2Þ ¼ Ψðk2; k1Þ allows us to perform the Takagi
factorization [26]

Ψðk1; k2Þ ¼
X
n

anfnðk1Þfnðk2Þ; ð1Þ

where ffnðkÞg forms a set of orthonormal basis functions.
We then expand those basis functions on the single-photon
output mode ψðkÞ and a normalized function θnðkÞ,
orthogonal to ψðkÞ, i.e., fnðkÞ ¼ λnψðkÞ þ μnθnðkÞ.
With such a decomposition, the two-photon output state
can be written as Ψðk1; k2Þ ¼ Ψsðk1; k2Þ þ Ψrðk1; k2Þ,
where the first part

Ψs ¼ c2ψðk1Þψðk2Þþ
c1ffiffiffi
2

p ½ψðk1Þθðk2Þþθðk1Þψðk2Þ� ð2Þ

corresponds to the state in which (i) both photons are
populating the single-photon output mode ψðkÞ or (ii) only
one of the photons is occupying ψðkÞ while the other
is in an orthogonal mode θðkÞ ∝ P

n anμnλnθnðkÞ [see
Fig. 2(a)]. The unwanted single and double occupation
amplitudes c1 and c2 are determined by

c2 ¼
Z

dk1dk2½ψðk1Þψðk2Þ��Ψðk1; k2Þ; ð3Þ

c1θðkÞ ¼
ffiffiffi
2

p Z
dk1ψ�ðk1ÞΨðk1; kÞ −

ffiffiffi
2

p
c2ψðkÞ: ð4Þ

The remaining two-photon wave function component

Ψr ¼
X
n

anμ2nθnðk1Þθnðk2Þ ð5Þ

is the desired output as it contains no photons in the ψðkÞ
mode [

R
dk1ψ�ðk1ÞΨrðk1; k2Þ ¼ 0, see Fig. 2(a)]. A perfect

photon sorter requires c1 ¼ c2 ¼ 0 and, while it was shown
in Ref. [11] that the condition c2 ¼ 0 can be satisfied in a
single-emitter waveguide QED system by choosing a
proper input pulse width, it is not clear whether the single
excitation probability jc1j2 can be made simultaneously
vanishing.

To address this question, we first study the sorting
performance of a single two-level emitter for a
Lorentzian input pulse ϕðkÞ ∝ 1=ðk2 þ σ2Þ with different
spectral widths σ in units of the coupling strength Γ
between the emitter and the guided mode. We extract
the double and single excitation probabilities jc2j2 and jc1j2
by the relations established in Eqs. (3) and (4) as well as by
the input-output quantum pulse method [27,28]. As shown
in Figs. 2(b) and 2(c), these two methods exhibit excellent
agreement with each other, and they both identify perfect
zeros of jc2ðσÞj2 (dashed lines). They also show unfortu-
nate maxima of jc1ðσÞj2 for the same pulses, and this
eventually results in an imperfect sorting of Lorentzian
input pulses with jc1j2 þ jc2j2 ≥ 0.26.
Optimization protocol.—The above results suggest that

we need to establish a joint optimization protocol that takes
both c1 and c2 into account in the search for the optimal
input mode ϕðkÞ. To this end, we first define the sorting
error to be E ¼ jc1j2 þ jc2j2, and the corresponding sorting
fidelity F ¼ 1 − E. With Eqs. (3) and (4), the sorting
error E can be expressed as a functional of the input mode
function ϕðkÞ (see the Supplemental Material [29]),
i.e., Eðϕ;ϕ�Þ ¼ R

dpdp0ϕ�ðpÞHðp; p0Þϕðp0Þ, where the
Hermitian kernel H is given by

Hðp; p0Þ ¼ 2

Z
dkL�

1ðk; pÞL1ðk; p0Þ − L�
2ðpÞL2ðp0Þ; ð6Þ

with L1ðk; pÞ and L2ðpÞ defined as

L1ðk; pÞ ¼
Z

dk1dp1Sðk1; k;p1; pÞT �ðk1Þϕ�ðk1Þϕðp1Þ;

L2ðpÞ ¼
Z

dkL1ðk; pÞT �ðkÞϕ�ðkÞ:

Now, the optimization problem amounts to finding the
wave function that minimizes the error functional Eðϕ;ϕ�Þ.
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FIG. 2. (a) Decomposition of the two-photon output wave
function using single-photon pulse modes ψðkÞ and fθnðkÞg. (b),
(c) The probabilities jc2j2 and jc1j2 [cf. Eq. (2)], as a function of
the linewidth σ of an input Lorentzian pulse. The circles and the
solid lines are obtained by the quantum pulse method and Eqs. (3)
and (4), respectively.
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The Hermitian kernel H is highly nonlinear in ϕ, and this
implies that the minimum cannot be obtained by mere
diagonalization or by a power iteration that works well for
linear systems. In order to minimize Eðϕ;ϕ�Þ, we there-
fore use the continuous steepest descent, which evo-
lves a normalized gradient flow (see the Supplemental
Material [29])

∂τϕ ¼ −
δEðϕ;ϕ�Þ

δϕ� : ð7Þ

In practice, we successively propagate Eq. (7) for small
time steps Δτ and renormalize ϕ to get a sequence that
gradually diminishes Eðϕ;ϕ�Þ, in the same spirit as the
imaginary time evolution method leading to the ground
state of an interacting Bose-Einstein condensate [30].
We first apply the above optimization scheme to a single-

emitter system. As shown in Fig. 3(a), the sorting fidelity
grows monotonically during the time evolution and con-
verges gradually to a maximum. To avoid trapping of the
solution in a local optimum, we have used different types of
initial trial wave functions, which all converge to the same
optimal fidelity F ≳ 0.9223. The corresponding optimal
input pulse ϕðkÞ presented in the upper inset of Fig. 3(a) is
a complex function that possesses a major peak at k ¼ 0
and two minor peaks around k ¼ �Γ. The time-reversal
invariance of the transmission coefficient T and scatte-
ring matrix S [31] implies the symmetry relation
E½ϕðkÞ;ϕ�ðkÞ� ¼ E½ϕ�ð−kÞ;ϕð−kÞ�, and if the minimum
of E½ϕðkÞ;ϕ�ðkÞ� is nondegenerate the optimal mode must
satisfy ϕ�ð−kÞ ¼ ϕðkÞ. This explains the symmetry of ϕðkÞ

in momentum space and dictates that its time-domain
counterpart ϕ̃ðtÞ ¼ ð1= ffiffiffiffiffiffi

2π
p Þ R dkϕðkÞe−ikt is a real func-

tion, as plotted in the lower inset of Fig. 3(a) (tilde ∼ is used
to distinguish the time-domain wave function from the
k-space one throughout this Letter).
As the optimal sorting by a single emitter is far from

being deterministic, we then investigate whether an
improvement can be made by adding more scatterers to
the system. Figure 3(b) shows the sorting performance for
two identical emitters. Surprisingly, the optimal sorting
fidelity approaches unity (F ≳ 0.9997) in this case, and the
optimal input pulse ϕ̃ðtÞ is more regular in shape, resem-
bling a Gaussian with a slight asymmetry. To gain more
insight in this significant improvement, we analyze the two-
photon output wave function for the optimal input pulse
based on the Takagi decomposition of the state [Eq. (1)].
For a single two-level emitter, the output state occupies
multiple basis functions [see Fig. 3(c)], and the most
populated mode f̃1ðtÞ [inset of Fig. 3(c)] has a weight
ja1j2 ∼ 0.5579. An unexpected phenomenon occurs when
two emitters are included: the output photons are confined
to a single temporal mode f̃1ðtÞ with a probability ja1j2 ≳
0.9911 [see Fig. 3(d)], whose shape approaches the time-
reversed input pulse, i.e., f̃1ðtÞ ≈ ϕ̃ðtd − tÞ with td a delay
time. We then examine the wave function Ψmðk1; k2Þ of the
field between the two emitters. As illustrated in Fig. 1(b), the
two-photon state is entangled over several temporal modes
due to the first scatterer. However, the optimal pulse appears
to be a special input mode, which under the action of
the single-emitter scattering matrix S0 generates an output
wave function Ψmðk1; k2Þ ≈ −jΨmðk1; k2Þjeiðk1þk2Þtd=2.
Such a quasi-linear dispersion indicates Ψmðk1; k2Þ≈
Ψmð−k1;−k2Þeiðk1þk2Þtd , which makes the second process
a shifted time reversal of the first one, i.e.,R
dp1dp2S0ðk1; k2;p1; p2ÞΨmðp1; p2Þ ≈ ϕð−k1Þϕð−k2Þ×

eiðk1þk2Þtd (see the Supplemental Material [29]). The under-
lying physics of the scattering then intuitively explains the
nearly perfect sorting enabled by the emitter pair

αâ†ϕj0i þ β
ðâ†ϕÞ2ffiffiffi

2
p j0i → αâ†ψ j0i þ β

ðâ†f1Þ2ffiffiffi
2

p j0i: ð8Þ

First, for a single-photon input, the dispersion of the
Gaussian-like pulse will accumulate instead of being can-
celed through successive interactions with the emitters,
which results in a distorted output wave function ψ̃ðtÞ
[see Fig. 1(a)]. However, when two photons are injected,
the above quasi-time-reversal process makes the output
mode f̃1ðtÞ almost free of distortion, and it can be made
orthogonal to ψ̃ðtÞ by a slight adjustment of the input mode.
We have employed the generality of the above time-

reversal sorting principle and performed the optimization
for systems containing Ne identical emitters. As shown in
Fig. 4(a), the optimal sorting process strongly depends on
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FIG. 3. (a),(b) The sorting fidelity for a single emitter and two
identical emitters during the time evolution. A Gaussian pulse
ϕðkÞ ∝ e−2ðk=ΓÞ2 is chosen as the initial wave function for the time
evolution. The optimal input modes are plotted in the insets in
wave number and time domains. (c),(d) The eigenvalues of
the Takagi decomposition of the two-photon output state for the
optimal input mode. Insets: time-domain wave functions of the
most populated output modes.
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the parity of Ne. For odd Ne, increasing the emitter number
can gradually improve the sorting performance. WhenNe is
even, the second half of the system can induce an effective
time reversal of the two-photon scattering induced by the
first half, leading to generally high sorting fidelities
(F > 0.999). However, larger numbers of emitters do
not exceed the already high fidelity of Ne ¼ 2, and the
time-reversal scattering becomes less accurate for Ne > 2
[see Fig. 4(b)].
In addition to the time-marching gradient method,

we also develop an iterative optimization scheme [see
Fig. 4(c)], which only requires the output state instead of
the full knowledge of the scatteringmatrix and thus makes it
more suitable for experimental implementation. The iter-
ation is composed of a forward scattering and its time-
reversal process interspersed by two filters, where the first
one filters out the undesired wave function Ψs, and the
second filter extracts the time-reversed most populated
mode f01ð−kÞ from the output wave function Ψ0ðk1; k2Þ.
Iteration by this filter is reminiscent of the one used in
optimal quantum storage [32–34], except that our state
mappingϕ½nþ1� ¼ M̂ϕ½n� is nonlinear. It is straightforward to
verify that a perfect sorting should be a fixed point of the
iteration, but a rigorous proof of convergence to the optimum
is difficult as the successive nonlinear mapping M̂ cannot be
interpreted as a power iteration as in the linear storage
problem [32]. Nonetheless, for even values of Ne we have
always found convergence and an equally high fidelity as by
the time-marching method [see inset of Fig. 4(a)].
Experimental considerations.—Since incorporating

more emitters to the system is experimentally challenging

and does not improve the fidelity for Ne > 2, we recom-
mend use of the emitter-pair based photon sorter. To assess
if our scheme is feasible for state-of-the-art implementa-
tions of the waveguide QED platform, we now consider
some realistic imperfections.
First, we investigate the sensitivity of our scheme to

deviations between the properties of the two emitters. In
particular, we consider a difference in the emitter-photon
coupling strengths Γ1, Γ2 and a detuning Δ ¼ ν2 − ν1
between their resonance frequencies. To that end, we
perform the input mode optimization for a range of
different values of Γ2=Γ1 and Δ=Γ1. As shown in Fig. 5(a),
the optimal fidelity F remains high for a broad range of
parameters assuring that fabrication issues may not be an
impediment to the scheme. We do find that the order of
emitters plays a role, and for a small imbalance Γ2=Γ1 ≲ 1,
the optimal fidelity can even be higher than in the case of
identical emitters, e.g., F > 0.9999 can be obtained at
Δ ¼ 0, Γ2=Γ1 ¼ 0.95. When the coupling strengths are
largely imbalanced, Γ2 > Γ1 is preferable near Δ ¼ 0. The
order of emitters is not important when the coupling
strengths are identical, because the optimal fidelity is a
symmetric function of the detunings [F ðΔÞ ¼ F ð−ΔÞ].
Second, we address the case of imperfect emitter-photon

couplings, for which photon losses into free space are
assumed and the directional efficiency factor β ¼ Γ=Γtot is
introduced to quantify the fraction of the total emitter decay
that leads to light emission in the desired waveguide mode.
When β is less than unity, the single- and two-photon output
wave functions ψðkÞ and Ψðk1; k2Þ become unnormalized,
andwe need to calculate their respective survival probabilities
N1 ¼

R
dkjψðkÞj2 and N2 ¼

R
dk1dk2jΨðk1; k2Þj2. As a

result, the Hermitian kernel in Eq. (6) is modified into the
following form:

H ¼ 2

N1

Z
dkL�

1ðk; pÞL1ðk; p0Þ − 1

N2
1

L�
2ðpÞL2ðp0Þ: ð9Þ

The fidelity to be optimized can be defined in different ways,
e.g., the total fidelity F t ¼ N2 − E gives the norm of the
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desired two-photon component Ψrðk1; k2Þ, and the condi-
tional fidelity F c ¼ F t=N2 ¼ 1 − E=N2 characterizes the
sorting performance conditioned on survival of both photons.
To maximize F t and F c, we must minimize Eðϕ;ϕ�Þ −
N2ðϕ;ϕ�Þ and Eðϕ;ϕ�Þ=N2ðϕ;ϕ�Þ, respectively. As shown
in Fig. 5(b), the fidelity optimized for a given β based on the
abovemodified scheme outperforms the onemerely using the
same mode as was optimized for β ¼ 1. We also note that
while the photon loss causes a proportional reduction inF t, a
very high conditional fidelity F c > 0.9997 can be main-
tained for β < 1, and hence a heralded photon sorter can be
constructed with lossy emitters.
In conclusion, we have presented a theoretical analysis

of the sorting of Fock states into orthogonal modes by their
coupling to two-level emitters. For the chiral waveguide
QED system considered in this Letter, a near-unity sorting
of one- and two-photon states can be achieved by two or a
higher even number of emitters. The proposed optimal
photon sorter, combined with single-qubit operations (e.g.,
temporal mode extraction [23–25] and pulse time reversal
[35–37]) can be used to build advanced quantum photonic
devices [11,13], such as deterministic Bell state analyzers
and nonlinear-sign gates [38] with fidelity≳0.9995 (see the
Supplemental Material [29]). It is also possible to optimize
the scheme against the degradation of fidelity due to pure
dephasing of the emitter [29]. By applying multilevel
[39,40] or driven [41] systems, it may be possible to
further improve the sorting performance, and generaliza-
tions to nonchiral systems [42,43] as well as multiphoton
regime for high-dimensional sorting [44] present attractive
topics for further exploration.
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