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The Duffing oscillator is a nonlinear extension of the ubiquitous harmonic oscillator and as such plays an
outstanding role in science and technology. Experimentally, the system parameters are determined by a
measurement of its response to an external excitation. When changing the amplitude or frequency of the
external excitation, a sudden jump in the response function reveals the nonlinear dynamics prominently.
However, this bistability leaves part of the full response function unobserved, which limits the precise
measurement of the system parameters. Here, we exploit the often unknown fact that the response of a
Duffing oscillator with nonlinear damping is a unique function of its phase. By actively stabilizing the
oscillator’s phase we map out the full response function. This phase control allows us to precisely determine
the system parameters. Our results are particularly important for characterizing nanoscale resonators, where
nonlinear effects are observed readily and which hold great promise for next generation of ultrasensitive
force and mass measurements. We demonstrate our approach experimentally with an optically levitated
particle in high vacuum.
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Introduction.—Nonlinear dynamics are abundant in
nature and enable a wide variety of applications, such as
precision measurements [1–6], signal amplification [7–12],
studies of the classical to quantum transition [13,14] and
chaos [15–18]. Most nonlinear oscillators are very well
described by the lowest order nonlinear coefficients. For
spatially symmetric oscillators the two dominant nonlinear
contributions are the damping coefficient and amplitude
squared dependent spring constant, respectively. The latter
is also known as the Duffing or χ3 nonlinearity. Precision
measurements require us to determine all system param-
eters precisely and accurately. This is done through
calibration measurements and model fitting. Generally,
the richer the dataset employed in model fitting the higher
is the accuracy, and the bigger the dataset the higher is the
precision of the parameters. Here, we show that with active
phase stabilization of a driven nonlinear nanomechanical
oscillator we are able to probe the otherwise unstable
branch of the oscillator’s response function [19]. In contrast
to previous work, we demonstrate phase control both for
parametric and direct driving. Thereby, we create a cali-
bration dataset that is significantly richer than what has
been used in previous attempts to characterize the nonlinear
coefficients [11,20–25]. This dataset allows us to reduce the
error significantly and to show that parametric driving
introduces a large systematic error.
The nanomechanical resonator is a levitated nanoparticle

in our experiments. Levitated nanoparticles stand out among

nanomechanical systems through their high level of isolation
from the environment and the in situ tunability of the system
parameters, without the need for refabrication. Hence, they
are perfectly suited to study nonlinear effects [11], force and
inertial sensing [24,26–29], and to test the fundamental laws
of quantum mechanics [30,31].
Experimental setup.—For levitation, we use a strongly

focused laser beam (wavelength λ ¼ 1064 nm, optical
power P ≃ 100 mW and numerical aperture NA ¼ 0.8)
to trap a charged silica nanosphere of radius R ≈ 70 nm at
pressures p ¼ 10−6 mbar (see Fig. 1). The particle’s charge
qt ¼ nq × qe is controlled at single elementary charge
precision qe ¼ 1.6 × 10−19 C by ionizing gas molecules
inside the vacuum chamber at moderate vacuum [32],
where nq is the number of charges. The particle’s
center-of-mass motion (c.o.m) is detected in balanced split
detection [33] by collecting the scattered light with a
collection lens (CL). The particle’s motional eigenfrequen-
cies are ðΩx;Ωy;ΩzÞ=2π ≃ ð125; 140; 40Þ kHz. Parametric
feedback (PFB) [34,35] provides nonlinear damping
∝ ηx2 _x, which stabilizes the particle’s motion at low
pressures and keeps the oscillation amplitudes in the linear
regime. In the following, we use independently direct
and parametric excitation to drive the nanoparticle’s motion
into the nonlinear regime along a single axis. Along this
direction the particle explores the trapping potential’s
anharmonicities [23,24], which are modeled by an addi-
tional cubic term in the restoring force ∝ ξx3 [36].

PHYSICAL REVIEW LETTERS 128, 213601 (2022)

0031-9007=22=128(21)=213601(6) 213601-1 © 2022 American Physical Society

https://orcid.org/0000-0001-6779-0535
https://orcid.org/0000-0003-1011-5269
https://orcid.org/0000-0001-7303-0903
https://orcid.org/0000-0001-8995-8976
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.213601&domain=pdf&date_stamp=2022-05-23
https://doi.org/10.1103/PhysRevLett.128.213601
https://doi.org/10.1103/PhysRevLett.128.213601
https://doi.org/10.1103/PhysRevLett.128.213601
https://doi.org/10.1103/PhysRevLett.128.213601


Hence, the dimensional equation of motion

ẍþ ðΓx þ Ωxηx2Þ_xþ Ω2
x½1þ ξx2 þ εmðtÞ�x ¼ FelðtÞ

m
ð1Þ

describes the dynamics of the particle position x along the x
axis. Here, Γx is the mechanical damping rate due to the
surrounding gas [33,37], m the oscillator’s mass [38], εm a
parametric modulation, and Fel an external electrostatic
force. Note that at low pressures as used here Γx ≪ Ωxηx2

[34] and that the stochastic force arising from residual air
molecules Fth is much weaker in high vacuum than the
externally applied driving forces and both Γx and Fth can
therefore be neglected.
Phase control: Implementation and measurements.—

a. Direct phase control. For direct driving we apply a near
resonant ac voltage at Ωd ≈ Ωx to a pair of electrodes (EL),
which surround the trapping region (Fig. 1, blue wire) and
are separated by d ¼ 1.4 mm [38]. This exerts a Coulomb
force FelðtÞ ¼ F0 uðtÞ ¼ F0 cosðΩdtþ ϕÞ on the particle,
where F0 ¼ qtE0 is the driving strength and E0 is the
electric field amplitude along the x axis at the trapping site.
We use a phase locked loop (PLL) to generate the driving
signal uðtÞ with a well-defined phase ϕ with respect to the
particle oscillation xðtÞ. The oscillator’s amplitude x̄ðϕÞ and
frequency ΩðϕÞ as a function of the phase are given by (see
Supplemental Material [39] for derivation).

x̄ðϕÞ ≈
�
4

F0

mΩ2
xη

sinðϕÞ
�
1=3

; ð2aÞ

ΩðϕÞ ≈Ωx

�
1 −

F0

2mΩ2
xx̄ðϕÞ

cosðϕÞ þ 3

8
ξx̄ðϕÞ2

�
: ð2bÞ

Since only positive amplitudes are physical, the phase
values are restricted to ϕ ∈ ½0; π�. Interestingly, from
Eq. (2) it follows that the amplitude and frequency are
unique functions of the phase, while the phase and
amplitude are multivalued functions of the frequency
[19]. Therefore, active phase control allows us to explore
the entire solution space. This is in contrast to frequency
control, where the drive frequency is set independently
and the oscillator phase can only assume the values
corresponding to stable solutions [11,23].
In Fig. 2(a) we plot x̄ðϕÞ versus ϕ with a fit to Eq. (2a).

The plot shows a maximum amplitude at ϕ ¼ π=2 with a
unique amplitude solution for each phase value. The
maximum amplitude can be tuned by changing the ratio
F0=η for fixed trapping powers. In Fig. 2(b) we plot the

FIG. 1. Experimental setup. A microscope objective (OBJ) with
NA ¼ 0.8 focuses a λ ¼ 1064 nm laser to trap a charged silica
nanoparticle inside a vacuum chamber at p ¼ 10−6 mbar. The
particle position x is measured by collecting and detecting the
scattered light with a balanced photodiode [33]. The nanoparticle
motion is stabilized through PFB (ηx_x) by modulating the trap
stiffness with an EOM. The same EOM drives the particle
parametrically with εm ¼ ε cosð2ΩxtÞ. A pair of electrodes gen-
erate an oscillating Coulomb force of amplitude F0 to directly
drive the particle. We apply phase control by phase locking the
output of the PLL uðtÞ to the particle’s motion signal xðtÞ at a
controlled phase difference ϕ. The PLL frequency equals the
particle frequency Ωx for direct driving (blue), and 2Ωx for
parametric driving (green), respectively.

(b)

(c)

(a)

FIG. 2. Direct phase control. (a) Amplitude x̄ðϕÞ versus phase
difference ϕ. For small ϕ the oscillation amplitude x̄ðϕÞ increases
with increasing ϕ, reaching a maximum value of x̄ðϕÞ ¼ 62 nm
for ϕ ¼ π=2 before it drops towards the thermal amplitude for
ϕ ¼ π. For ϕ > π, we start cooling the nanoparticle, i.e., the
amplitude drops below its thermal value (not shown here). For all
ϕ there is only one amplitude solution. (b) Frequency shift δΩ
versus phase difference ϕ. We observe a minimum δΩ=2π ¼
−1.14 kHz at ϕ ¼ 0.38π, which corresponds to the expected shift
from Eq. (2b). The part with the negative slope (gray shaded area)
corresponds to the unstable branch. (c) Amplitude response x̄ðϕÞ
versus frequency shift δΩ. The bistable region (gray shaded area)
has two stable (black solid line) and one unstable branch (red
dashed line). The latter is only accessible with phase control,
while the former leads to hysteresis in frequency control. The
lines show the model fit to Eq. (2).
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frequency shift δΩ ¼ ΩðϕÞ −Ωx versus the phase differ-
ence ϕ with a unique solution for all ϕ. The region of
negative slope between the local minimum and maximum
defines the bistable regime in frequency control (gray shaded
area). This regime has two stable (solid) and one unstable
branch (dashed) as depicted in Fig. 2(c), which lead to
hysteresis in frequency control [23]. The width of the
unstable region is given by δϕus ¼ arctan ½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p
− 2Þ=

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 3

p
Þ�, where β ¼ ð3ξ=ηÞ. Thus, the width of the

unstable region remains constant for fixed β. However,
the maximum frequency shift increases with F0 [see Fig. 4(a)
in the Supplemental Material [39]]. Thus, we can tune
the maximum frequency shift without changing the width
of the unstable region. This has applications in shaping the
effective potential of the particle amplitude [11].
b. Parametric phase control. We complement our study

with parametric excitation of the particle motion. An electro-
optic modulator (EOM) (see Fig. 1) modulates the trap
intensity, thereby modulating the trap stiffness as εmðtÞ ¼
εuðtÞ ¼ ε cosðΩptþ ϕÞ with Ωp ≈ 2Ωx and modulation

depth ε. The solutions for x̄ðϕÞ and ΩðϕÞ for the parametric
drive are given by (see Supplemental Material [39] for
derivation):

x̄ðϕÞ ≈
�
−2

ε

η
sinð2ϕÞ

�
1=2

; ð3aÞ

ΩðϕÞ ≈ Ωx

�
1þ ε

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q
cos ð2ϕ − arctan βÞ

�
: ð3bÞ

Similarly to direct driving, the oscillator’s amplitude x̄ðϕÞ
and frequency ΩðϕÞ are unique functions of ϕ. Since only
positive amplitudes are physical, the phase values are
restricted to ϕ ∈ ½−π=2; 0�. For ϕ > 0, the particle is no
longer excited but cooled parametrically instead [35,40].

(b)

(c)

(a)

FIG. 3. Parametric phase control. (a) Amplitude x̄ðϕÞ versus
phase difference ϕ. x̄ðϕÞ increases with ϕ, reaching a maximum
value of x̄ðϕÞ ≈ 72 nm at ϕ ¼ −π=4. For larger ϕ the amplitude
declines towards its thermal value at ϕ ¼ 0 and for 0 < ϕ < π=2
the particle is cooled (not shown here). For all ϕ there is only one
solution. (b) Frequency shift δΩ versus ϕ. The part with the
negative slope (gray shaded area) corresponds to the unstable
branch and the maximum frequency shift δΩ ¼ −1.65 kHz is
located at ϕ ¼ arctan β=2 ¼ −0.55π=2. (c) Amplitude response
x̄ðϕÞ versus δΩ. The bistable region has one stable (black solid
line) amplitude and one unstable (red dashed line) branch. The
second stable branch corresponds to x̄ ¼ 0 and is not accessible in
phase control. In frequency control the amplitude jumps between
its thermal value and the stable branch when the drive frequency
lies within the shaded area. The gray shaded area highlights the
bistable region and the lines show the model fit to Eq. (3).

FIG. 4. Estimates of the nonlinear parameters for (a) direct (blue
circles) and (b) parametric driving (green squares) using the full
nonlinear response and only the subset corresponding to the stable
branches (gray circles) for various driving strengths, F0 and ε,
respectively. Each datapoint corresponds to a different driving
strength and is obtained from a fit as the ones shown in Figs. 2 and
3. The shaded areas represent the mean and 1-sigma error ellipses
of the datasets. The dashed green (blue) ellipse corresponds to the
shaded green (blue) area in the other subplot. The white cross and
red shaded area represent the mean and 1-sigma error ellipse of the
combined parameter estimate, respectively. For the numerical
values see Table I.
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Figure 3 shows the data and fits to Eq. (3). The maximum
of x̄ðϕÞ is reached at ϕ ¼ π=4. In Fig. 3(b) we plot δΩ
versus ϕ. The maximum frequency shift δΩ is given by
ðε=4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p
when ϕ ¼ arctanðβÞ=2, yielding δΩmax ¼

−1.65 kHz for the data shown here. In contrast to direct
driving, δΩ has no local maximum and only a local
minimum. The local minimum separates the stable
from the unstable regime [11,23]. The x̄ðϕÞ versus
δΩðϕÞ representation shows the characteristic bistability
[Fig. 3(c)], which we again highlight in gray. In contrast to
the direct driving case, we only observe one stable branch
because the second stable solution in parametric driving is
x̄ ¼ 0 [41], which cannot be accessed in phase control since
there is no signal for the PLL to lock to.
Extracting nonlinear coefficients.—The nonlinear param-

eters ξ and η do not depend on the driving strength F0, nor
on the modulation depth ε. Thus, to obtain a richer dataset
we repeat the measurements shown in Figs. 2 and 3 for
different driving strengths F0 and modulation depths ε,
respectively. For each measurement, we extract the non-
linear parameters from a fit to our models Eq. (2) and
Eq. (3). The extracted values of the nonlinear parameters
are shown in Fig 4. The parameter estimates shown in blue
[Eq. (2)] and green [Eq. (3)] are obtained from a fit to the
full dataset, while the gray values are obtained from a fit to
a subset of the data that contains only the stable branches
(solid lines in Figs. 2 and 3). The latter corresponds to the
most complete dataset, which is available in methods
without phase control, i.e., when the resonator is driven
with a harmonic signal at fixed frequency [11,23,42,43] or
excited thermally [24,44,45].
Thermal excitations or other stochastic processes such as

frequency fluctuations of the resonator, however, cause
random transitions between the stable branches and quench
the bistable region in frequency control. Thus, the observ-
able data is reduced in practice if the stochastic forces are
not kept at bay [11].
The comparison of the full dataset and the subset allows

us to quantify the improvement in parameter estimation that
we get by making the unstable branch accessible through
phase control. Clearly, the parameter estimates from using

the full response function have much better precision
(smaller error bars) and show a much smaller variance
across the dataset. The fact that the scatter of the datapoints
is much larger than the statistical error from the fit suggests
the presence of a systematic error when varying the driving
strength. The covariance matrices of each dataset provide
an estimate for the size of the systematic error and are
shown as elliptical shaded area in Fig. 4. We also observe
that the nonlinear parameters are strongly correlated. This
makes it particularly challenging to get an accurate estimate
of the nonlinear parameters in parametric driving when one
observes only the stable branch.
For each method (direct and parametric drive), we

calculate the precision weighted mean both for the full
and for the reduced dataset. Then we combine the two
results weighted by the inverse of their covariance matrices
to obtain the best parameter estimate of the combined data
η ¼ 4.317� 0.009 μm−2 and ξ ¼ −6.256� 0.010 μm−2,
which are shown as white crosses in Fig. 4 together with the
1-sigma error ellipse (red). The parameter estimates of the
individual datasets are summarized in Table I.
Conclusion and outlook.—We have shown that phase

control allows us to access the full response function of a
nonlinear oscillator and that the information contained in
the unstable branch significantly improves the nonlinear
parameter estimation. We also demonstrated that para-
metric and direct driving give overlapping results within
the measurement error. By combining the results from both
methods we reduce the overall error and get a better
estimate of the actual parameter values.
The parameter estimation by phase control shown here is

not restricted to levitated particles in vacuum but also applies
to solid state systems such as carbon nanotubes [22], stressed,
high-aspect ratio [46], and other nanomechanical resonators
[47,48] where nonlinear effects are readily observable. The
estimation also plays a prominent role in applications such as
vibrational energy harvesting, which provides micropower
sources for microsystems that are broadly employed in
environmental and health applications [49]. Another example
are the superconducting qubits, where the nonlinearity is
required to generate nonequidistant energy levels and for

TABLE I. Parameter estimates of the nonlinear coefficients. The estimates for direct and parametric driving,
respectively, is the precision weighted mean of the individual model fits for each method. The combined values is
the mean of the two methods weighted by the inverse of their covariance matrices. The first two columns correspond
to the full dataset and give the centers of the green (direct), blue (parametric) and red (combined) ellipses in Fig. 4.
The errors equal the widths of the ellipses along the parameter axes. The values in the last two columns correspond
to the subset of the data with only the stable branches and the gray ellipses in Fig. 4.

Full Stable

η [μm−2] ξ [μm−2] η [μm−2] ξ [μm−2]

Direct 4.394� 0.010 −6.090� 0.015 4.631� 0.073 −6.254� 0.064
Parametric 4.240� 0.016 −6.422� 0.013 5.463� 0.070 −5.882� 0.040
Combined 4.317� 0.009 −6.256� 0.010 5.047� 0.051 −6.068� 0.038
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ensuring that the pulse bandwidth is tailored to the spacing of
the desired levels [50,51].
Levitated systems, however, will benefit from our

sensitive technique for tracking and characterizing the
parameter changes introduced by perturbations of the
trapping potential near surfaces [52,53] or electrostatic
traps [44]. Moreover, our approach paves the way for new
studies of the nonlinear regime, such as realizing a
parametron, a logic element based on a driven nonlinear
oscillator [54].
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