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We experimentally engineer a moatlike dispersion in a system of weakly interacting bosons. By
periodically modulating the amplitude of a checkerboard optical lattice, the two lowest isolated bands are
hybridized such that the single particle energy displays a continuum of nearly degenerate minima that lie
along a circle in reciprocal space. The moatlike structure is confirmed by observing a zero group velocity at
nonzero quasimomentum and we directly observe the effect of the modified dispersion on the trajectory of the
center of mass position of the condensate. We measure the lifetime of condensates loaded into different moat
bands at different quasimomenta and compare to theoretical predictions based on a linear stability analysis of
Bogoliubov excitations. We find that the condensate decay increases rapidly as the quasimomentum is
decreased below the radius of the moat minimum, and argue that such dynamical instability is characteristic of
moatlike dispersions, including spin-orbit coupled systems. The ground state of strongly interacting bosons in
such degenerate energy landscapes is expected to be highly correlated, and our work represents a step toward
realizing fractional quantum Hall-like states of bosons in an optical lattice.
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The ground state of systems whose low energy single-
particle states have a continuous degeneracy are typically
strongly correlated and exhibit novel behavior [1–4]. There
is significant interest in engineering such continuous
ground state degeneracy, one of the simplest cases being
a moatlike dispersion, with a continuum of degenerate
minima that lie along a closed loop in reciprocal space. The
determination of the interacting many-body ground state
for this simple 1D degeneracy, remains an interesting
problem [5–12]. Even in the weakly interacting, mean
field limit, where strong correlations are not expected, the
nature of the low energy states is unclear. For noninteract-
ing bosons in 3D with a moat dispersion, the density of
states is two-dimensional at low energy, and Bose-Einstein
condensation (BEC) at finite temperature is not expected.
Interactions play an important role in the condensate
stability, however, and BEC at finite temperature has been
predicted for the interacting system [13,14].
Proposed approaches to produce moatlike energy dis-

persions include inducing Rashba spin-orbit coupling
(SOC) [15] and Floquet engineering the desired band in
a driven optical lattice [11]. In both cases, the modified
dispersion results from hybridizing different motional
states. Experimentally, approximate moatlike dispersions
have been realized with ultracold atoms using SOC
[15–18]. The resulting dispersions retain the discrete rota-
tional symmetry of the spin-orbit coupling beams, and the
moat minimum consists of 3 or 4 distinct minima instead of
a completely degenerate ring [19].
In this work, we employ a Floquet engineering approach

to realize a system of interacting bosons with a moatlike

dispersion, similar to the proposal in Ref. [11]. The
technique does not rely on having a specific atomic species
with a particular spin structure, and can hence be applied to
a range of bosonic and fermionic systems.
Using an optical lattice consisting of a two-dimensional

checkerboard array of one-dimensional tubes, we hybridize
[20] its two lowest energy bands [Fig. 1(a)] by modulating
the lattice depth. The form of the resulting dressed bands
εiðq⃗Þ depends on the frequency fm and fractional amplitude
αm of the modulation [Fig. 1(c)]. (Unless otherwise noted,
αm ¼ 0.12.) For drive frequencies near the bare band gap,
one of the hybrid bands (which we denote the “upper”
band) has a nearly circular minimum at nonzero radius qmin
[Fig. 1(b)].
Our method is expected to possess a high intrinsic

rotational symmetry, allowing for smaller absolute energy
variation along the moat minimum than typical Raman
coupled SOC schemes [15–18]. Figure 1(d) presents two
measures of the moat degeneracy calculated as a function of
the detuning of fm relative to the q⃗ ¼ 0 bare band gap.
The magnitude of the peak-to-peak amplitude of ε along the
moat, ΔεMOAT, is less than 21 Hz over the entire range. The
predicted flatnessF , defined as the ratio ofΔεMOAT relative
to the local maximum of the band at q⃗ ¼ 0, is similar to the
flatness determined in Ref. [11].
Our experiment begins with a 87Rb BEC in the jF ¼ 1;

mF ¼ −1i state held in a hybrid trap, consisting of a
crossed optical dipole trap and a vertically offset magnetic
quadrupole trap. A 2D checkerboard lattice [21,22] with
λ ¼ 813 nm is adiabatically loaded in 200 ms to a depth
V0 ¼ 5.9ð1ÞER, with a staggered offset 0.44ð1ÞER between
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neighboring sites (here, ER ¼ ℏ2k2L=2m ¼ h × 3.5 kHz is
the single-photon recoil energy, kL ¼ 2π=λ is the single-
photon wave vector and m is the mass of 87Rb). See the
Supplemental Material [23] for details. This results in the

two lowest bare bands having a spacing at q⃗ ¼ 0 of
hΔ0 ¼ h × 3.2 kHz, both separated from the next nearest
(weakly coupled) excited band by at least h × 5.2 kHz. In
the presence of the lattice, the trap frequencies are
ω⊥=2π ¼ 11ð1Þ Hz, ωz=2π ¼ 50ð2Þ Hz, and the atomic
cloud (containing approximately 104 atoms) possesses
an average mean-field interaction energy on the order of
h × 125 Hz, which drops to h × 70 Hz in the absence of
the lattice.
We first demonstrate the effectiveness of amplitude

modulation to hybridize the lowest bare bands by meas-
uring the spacing between the dressed bands Δεðq⃗Þ for two
different detunings, δ ¼ fm − Δ0. To extract the values of
Δε, shown in Fig. 2(a), we observe the bare band
population dynamics after a sudden quench into the dressed
bands [23,24]. To observe the dynamics, we measure the
relative populations after a band map [25], where the lattice
is ramped off in 800 μs. For measurements at nonzero
quasimomenta, a kick is imparted to the condensate before
the modulation starts, by suddenly translating the magnetic
quadrupole field. This induces oscillatory motion of the
cloud along a line passing through the center of the trap in
the unmodulated lattice. For detuning δ ¼ −550 Hz, the
measured dressed band spacing has a minimum ≃200 Hz
(0.06 ER=h) at q ≃ 0.3kL, as expected from calculations.
In order to adiabatically prepare the condensate in a

single dressed band, the amplitude modulation coupling the
two bands is slowly turned on, starting off resonance. The
magnitude and frequency of the coupling are simultane-
ously ramped to their final values in 12 ms starting at a
detuning jδj > 600 Hz [23]. The direction of the frequency
sweep determines which dressed band the BEC is loaded
into: a sweep starting blue (red) detuned and ending close
to resonance prepares atoms in the upper (lower) dressed
band [see Fig. 1(c)].

FIG. 1. Generation of a moat band via amplitude modulation.
(a) Lowest bare energy bands of the checkerboard lattice, plotted
versus quasimomentum q⃗ ¼ ðqx; qyÞ over the first Brillouin zone.
(b) Floquet-Bloch band with nearly degenerate moatlike minima,
resulting from hybridization of the bands in (a). (c) Cross section
along qy ¼ 0 of the quasienergy spectrum εðq⃗Þ showing both
dressed bands. Left: adiabatic preparation of a condensate,
initially occupying the bare ground band, into the upper band
by sweeping the drive frequency down, starting above resonance.
Right: preparation into the lower band by sweeping the frequency
up. (d) Peak-to-peak variation of ε along the moat, ΔεMOAT, and
moat flatness F versus detuning of the drive. The moat radii are
indicated in the upper axis.

FIG. 2. Dressed band spacing, bare band admixture, and group velocity profiles of the Floquet bands as a function of quasimomentum
q, measured along a line passing through the center of the Brillouin zone (BZ1). (a) Spacing Δε between the Floquet bands at two
detunings, as measured from quench dynamics. Solid lines indicate calculated spacings. (For δ ¼ −550 Hz only, αm ¼ 0.18.)
(b) Measured bare excited band admixture for Floquet states in the moat band. The solid (dashed) lines are the admixture calculated with
(without) mean-field interactions. Marker shapes correspond to different modulation detunings. The inset shows an example of a single-
shot two-dimensional admixture profile within BZ1, calculated from absorption images of heated clouds like those shown in (c), where
the dashed lines outline BZ1. (d) Time-averaged group velocity hvgiT for Floquet states in the moat band. The solid and dashed colored
lines are calculated numerically assuming interacting and noninteracting particles, respectively (see Ref. [23]). The dashed (dotted) gray
line indicates the group velocity associated with the bare lattice (free-particle) dispersion.
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We measure the bare band admixture of the experimen-
tally prepared state immediately after the 12 ms ramp as a
function of q⃗ and compare it to the expected bare state
populations, see Fig. 2(b). The theoretical profiles from a
noninteracting Floquet calculation [Fig. 2(b), dashed lines]
capture the magnitude of the admixture, particularly near
the center of the band. A nonlinear mean-field calculation
based on the time-dependent Gross-Pitaevskii equation
[23] improves the overall agreement with the data
[Fig. 2(b), solid lines]. The inset shows an example of
the 2D bare band admixture measured with a heated cloud
having a significant spread around the center of the first
Brillouin zone (BZ1), showing the 2D nature of the moat
band. The admixture is more azimuthally homogeneous
than the raw populations [Fig. 2(c)], whose distribution is
affected by both stochastic and systematic fluctuations of
the initial momentum of the BEC.
The dispersion εðq⃗Þ determines the condensate’s center

of mass velocity vg, which is related to the gradient of the
Floquet band according to ∇q⃗ε ¼ ℏhvgiT , where h…iT
indicates time-average over a single period T ¼ 1=fm of
the modulation [26–28].
We measured vg under the same conditions used for the

admixture profile [Fig. 2(b)], except that the bare band
population detection was replaced by a diabatic snap-off of
the lattice, which projects the condensate onto its plane-
wave components. Micromotion during the drive period
gives rise to periodic instantaneous vg, which we account
for by averaging over different snap-off times relative to T.
The values of vg were extracted from time-of-flight (TOF)
images by computing the mean velocity of the momentum
peaks, weighted by their populations. The measured hvgiT
profile, presented in Fig. 2(d), is the result of averaging vg
at modulation phases 0, π=2, and π, corresponding to
maximum, average, and minimum lattice intensities. A
vanishing group velocity for nonzero q⃗, a feature easily
recognized in the black and red data, is a clear signature of a
band with a moatlike shape.
Spectroscopic measurements like those in Fig. 2 provide

information about dressed energies, but do not capture the
modified dressed state behavior. While the data in Fig. 2(d)
directly show the velocity, it is an instantaneous measure-
ment. The modification of vg should impact the motional
dynamics of the BEC in the trap, if the heating of the BEC
is sufficiently small relative to the timescale of the trap.
Figure 3 shows the expected and observed motional

dynamics of the BEC in the trap after adiabatic preparation
in the upper dressed state with an initial q⃗ ≠ 0 for bands
with different moat radii. Theoretical calculations of the
time evolution of q⃗, superimposed on the corresponding
dispersion, are presented in Fig. 3(a). These trajectories
were computed using quasiclassical equations of motion
[29]: dq⃗=dt ¼ ℏ−1ftrapðr⃗cÞ, dr⃗c=dt ¼ ℏ−1∇q⃗ε, where ftrap
is the force exerted by the harmonic trap, r⃗c is the

condensate’s position, and ε is the quasienergy spectrum
inferred from the calibration of lattice parameters. Initial
conditions ðq⃗0; r⃗c0Þ are the same for all curves, and were
chosen so that the trajectories have a significant depend-
ence on the moat position. For the unmodulated case, the
trajectory is a standard ellipse associated with the isotropic
harmonic trap. For the modulated case, the change in
effective mass significantly modifies the atoms’ response to
the restoring force of the trap.
We experimentally verified the effect of the dressed band

dispersion on the dynamics of a condensate. Using param-
eters that produce the effective bands in Fig. 3(a), we
measured the position after time-of-flight as a function of
the time held in the moat band [see Fig. 3(b)], using a two-
kick sequence that results in elliptical motion for the
unmodulated case. (The scaled time-of-flight position is
approximately equal to q⃗=kL, with a small additional
contribution from the position r⃗c, see Ref. [23].)
Although heating effects limited the longest hold time in
the dressed band to 26 (black curve) and 21 ms (red curve),

FIG. 3. Time evolution of quasimomentum in different moat
bands for the same initial conditions. (a) Predicted quasimo-
mentum trajectories, plotted on top of the respective quasienergy
spectrum. Yellow dots indicate the initial value of q⃗. Blue, black,
and red curves correspond to moats with radii 0kL (no modu-
lation), 0.23kL, and 0.30kL. (b) Position after time of flight,
ðxTOF; yTOFÞ, scaled by LTOF ¼ ℏkL=mTTOF, for different times
held in the effective moat band. Experimental data taken under
conditions that yield dressed bands similar to those shown in (a).
Blue points were obtained in the absence of modulation.
Modulation frequencies for the black and red points are fm ¼
2.90 and fm ¼ 2.65 kHz, respectively. Time elapsed for blue,
black, and red points is 130, 26, and 21 ms, respectively. Dashed
lines are the predicted position after time of flight for condensates
held in the bands shown in (a).
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the effect of the modification of the dispersion on the
motion in the trap is evident.
Instabilities and heating are known to hamper the

realization of effective Hamiltonians using Floquet engi-
neering [30]. We examined the heating that limits the
lifetime of condensed dressed states in both Floquet bands.
Figure 4(a) shows the measured condensate fraction decay
rates for BECs loaded into the upper and lower hybridized
bands as a function of the detuning δ, which changes the
moat radius qmin of the upper band. Rates were measured
for condensates prepared at jq⃗j ¼ 0kL and jq⃗j ≃ 0.20kL. To
keep an approximately constant value of jq⃗j during the
decay measurement, we carefully prepare the initial con-
dition so that the resulting trajectory is circular. We find that
the decay rates in the upper band increase dramatically
when jq⃗j approaches qmin, becoming difficult to measure
for jq⃗j < qmin.
To understand the condensate decay, we modeled the

system with a periodically driven Gross-Pitaevskii equation
and calculated condensate depletion rates using a linear
stability analysis similar to the technique in Refs. [31,32]

(see Ref. [23]). In Figure 4(b) we present the theoretical
condensate depletion rates, which are calculated as the
largest growth rate of the unstable modes, for the frequency
range used for the data in Fig. 4(a). The frequencies at
which the condensate in the upper and lower bands are
most unstable differ substantially, due to the opposite band
curvatures [33]. We find that there are two contributions to
the decay: intraband scattering processes within the dressed
band and interband scattering between the bands. The
intraband processes are fundamentally related to the shape
of the band, and dynamical instabilities [34,35] for a
moatlike dispersion generally arise for jq⃗j < qmin, where
the band curvature becomes negative along the direction
perpendicular to q⃗. On the other hand, the interband
processes are not restricted to jq⃗j≳ qmin. Figure 4(b) (open
triangles) shows the stability analysis restricted to the single
moat band, and it shows no decay until the sudden turn on
of loss at jq⃗j ¼ qmin. Despite the fact that the mode stability
analysis is only applicable to the initial exponential
dynamics that are dominated by decay into a single mode,
the model captures the overall scale of the condensate
decay rate and its dependence on detuning.
Previous theoretical work [13,14] in the Rashba

SOC system with similar moatlike dispersion indicates
that a single-momentum condensate is stable exactly at
jq⃗j ¼ qmin. This is consistent with the absence of interband
processes contributing to the decay for jq⃗j ≥ qmin for the
Rashba case. However, while the stability analysis shows
that the condensate is stable at the moat minima, we note
that, as with our case, the Rashba SOC system is also
unstable for jq⃗j < qmin, and therefore sits at a critical point
in momentum space [23,36]. The jq⃗j < qmin instability is
related to the curvature of the moat band, and is generally
present, regardless of the underlying mechanism for gen-
erating the moat. It is indicative of the fact that the BEC
is not a many-body eigenstate of the static effective
Halmiltonian. The fact that the moat minima coincide with
the boundary of the instability region likely has implica-
tions for the ground state of the system, even in the weakly
interacting limit. The jq⃗j≳ qmin instability is due to
resonant coupling to the second band and depends on
the specific lattice configuration used. It can be avoided
under configurations lacking resonant dispersion condi-
tions [23].
The instability at jq⃗j < qmin can be seen in Fig. 4(b)

where we show the single-band linear stability analysis
calculation (open triangles). The decay rate increases
sharply from near zero at jq⃗j ¼ qmin. The contribution
from the lower band induces more loss in the region
jq⃗j≳ qmin, as shown by the two-band calculation (blue
filled triangles).
In conclusion, we have engineered a moatlike dispersion

for ultracold atoms in an optical lattice, and confirmed the
dispersion by measuring the dynamics of a BEC in the
modulated lattice. We measured condensate lifetimes under

FIG. 4. Instabilities of a condensate in the dressed bands.
(a) Observed condensate fraction decay rates for BECs in lower
and upper bands. For each band, we measured rates for jq⃗j ¼ 0kL
and jq⃗j ≃ 0.2kL. The solid (dashed) vertical gray line indicates
the frequency at which the moat radius qmin is 0.2kL (0kL).
(b) Calculation of the growth rate of the most unstable mode,
based on a Floquet-Bogoliubov linear stability analysis for
conditions similar to those in (a). The instability rates calculated
for jq⃗j ¼ 0.2kL including only contributions from the single
BEC-occupied band are shown with open symbols. The un-
occupied band induces increased decay for jq⃗j near resonance.
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various moat conditions. Besides the condensate decay
inherent to the moat band shape, our model suggests that
interactions coupling to the other dressed band can be
significant and need to be considered in systems involving
near resonant hybridization.
The many-body ground state of interacting bosons in the

low density, strongly correlated limit in such a moat remains
an open question [5–11]. It has been argued [8–11] that the
low density ground state in a moatlike dispersion is a
composite-fermion-like state leading to a chiral spin liquid,
and it will be interesting to explore this limit experimentally.
Reaching the highly correlated regime requires confinement
in the transverse direction (attainable with the addition of an
out-of-plane optical lattice) to ensure the system is fully 2D.
Additionally, the density would need to be much lower; for
example, with qmin ≲ 0.3kL, the density should not exceed
one atom per ten lattice sites [11]. It remains an outstanding
experimental and theoretical question as to how to prepare a
low energy state in such a system, as well as how and how
quickly the correlated system heats.
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