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1Institut de Mathématiques de Bourgogne (IMB), UMR 5584, CNRS,
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Black hole (BH) spectroscopy has emerged as a powerful approach to extracting spacetime information
from gravitational wave (GW) observed signals. Yet, quasinormal mode (QNM) spectral instability under
small scale perturbations has been recently shown to be a common classical general relativistic phenomenon
[J. L. Jaramillo et al., Phys. Rev. X 11, 031003 (2021)]. This requires assessing its impact on the BH QNM
spectrum, in particular on BHQNMovertone frequencies.We conclude (i) perturbed BHQNMovertones are
indeed potentially observable in the GW waveform, providing information on small-scale environment BH
physics, and (ii) their detection poses a challenging data analysis problem of singular interest for LISA
astrophysics. We adopt a twofold approach, combining theoretical results from scattering theory with a fine-
tuned data analysis on a highly accurate numerical GW ringdown signal. The former introduces a set of
effective parameters (partially relying on a BHWeyl law) to characterize QNM instability physics. The latter
provides a proof of principle demonstrating that the QNM spectral instability is indeed accessible in the time-
domain GWwaveform, though certainly requiring large signal-to-noise ratios. Particular attention is devoted
to discussing the patterns of isospectrality loss under QNM instability, since the disentanglement between
axial and polar GW parities may already occur within the near-future detection range.

DOI: 10.1103/PhysRevLett.128.211102

Introduction.—Are all black-hole vibrational modes
observable in gravitational-wave astronomy? What astro-
physical and fundamental physics information do they
actually convey?
Gravitational waves (GW) from binary systems are

systematically observed by current GW antennas [1]. The
late-time radiation of newly formed black holes (BHs) is
characterized by an exponentially damped, oscillating
signal. The quasinormal modes (QNMs) ω ¼ ωR þ iωI

encode the decaying scales 1=ωI and oscillating frequencies
jωRj. An essential tool in astrophysics, fundamental gravi-
tational physics, and mathematical relativity [2–6], QNMs
provide structural information about the BH’s background.
The future generation of ground- and space-based detectors
shall provide data sufficiently accurate to measure several
QNMs [7–16], allowing the addressing of fundamental
questions in physics [17,18].
Small environmental perturbations are not expected to

radically disrupt the underlying BH spacetime, given the
confidence in BH dynamical stability. Yet, instabilities
seem intrinsic to the theory at the spectral level [19–25].
High-wave-number fluctuations may alter significantly the
QNM spectrum [19], with stronger effects in the high
overtones [26]. Since recent GWevents have opened a rich

discussion on the detectability of overtones and higher
harmonic modes [11–13,28–31], addressing our opening
questions is paramount for correctly interpreting current
and future GW observations.
BHperturbation theory is described via a nonconservative

systemwith energy leaking into the BH and propagating out
to thewave zone. Evolution is generated by non-self-adjoint
operators, in a common framework across classical and
quantum systems [32]. The notion of pseudospectrum,
recently introduced into gravity [19], allows the identifica-
tion of spectral instabilities in nonconservative systems
[32–35]. As a topographical map, the pseudospectrum
contour level with value ϵ delimits the complex plane region
where QNMs can migrate when the system undergoes
perturbations of order ϵ. Such an ϵ-contour line lies up to
a distance ∼κϵ of the spectrum, with κ a “conditioning
number.” Spectral stability is characterized by κ ∼ 1,
whereas instabilities occur for κ ≫ 1. In the latter case,
contour lines extend into large complex plane regions.
Remarkably, this arises for BHs [19,24,25,36] (see Fig. 1).
QNM instability.—To trigger the instabilities, Ref. [19]

introduced an ad hoc modification ϵδVk (ϵ ≪ 1) into the
potential governing the dynamics of GWs on a spherically
symmetric BH spacetime. When having a sinusoidal profile
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in the radial direction, ϵδVk mimics a Fourier mode from a
realistic potential and it captures the contribution of small
and large scale perturbations via a wave number k. In
particular, the QNM instability discussed here is a large
wave number effect [19], starting already at moderate
values of k, as illustrated in Fig. 1 showing the overtone
instability for k ¼ 10. We stress the appearance of
(i) branches opening similarly to the pseudospectra lines
(white circles), dubbed “Nollert-Price” (NP) branches
[22,23] in Ref. [19]; (ii) modes (white crosses) with
jωRj < jωR

branchj, for ωI ∼ ωI
branch, i.e., inside the region

bounded by the NP branches, named here “internal modes.”
Specific values for the perturbed QNMs depend on the

particular model for the environmental effects or modifi-
cations in the gravity theory. Yet, as discussed in Ref. [19],
the opening pattern observed in Fig. 1 is rather generic,
which raises the need for a research program aiming at
understanding the GW observational implications of such
QNM instabilities and their universality properties. The
challenge lies on several fronts.
On the theoretical side, in the effort to model the

specifics of the local environmental astrophysics, or
extending gravity beyond general relativity (e.g.,
[37,38]), GW astronomy shall profit from existing results
in the theory of scattering resonances [39–49]. Specifically,
theorems permitting us to extract perturbed QNM patterns

reflecting features agnostic to the particular model under
consideration. On the data analysis side, one may need
enhanced detection pipelines so that the features displayed
in Fig. 1 are not overlooked, if present.
In the following three sections, we explore three aspects

allowing us to evaluate and characterize QNM instabilities:
effective parameters, Weyl law, and isospectrality loss.
Effective parameters.—Consistent with theorems for

scattering resonances [39–49], our numerical analysis
demonstrates the logarithmic asymptotics of pseudospectra
contour lines, ωI ∼ C1 þ C2 lnðjωRj þ C3Þ for jωRj ≫ 1,
with C1, C2, and C3 constants. Asymptotics offer a
guideline to identifying the relevant patterns of physical
phenomena [50]. In our QNM instability setting, perturbed
NP branches open up in the complex plane and approach
from above [51] the pseudospectral lines, that define the
(upper) boundaries of QNM-free regions. As the size and
wave number of C∞ perturbations increase, QNMs get
closer to the pseudospectra lines, so the latter become good
proxies of QNM branches. Our results demonstrate that
their logarithmic behavior starts actually very close to the
unperturbed spectrum (see Supplemental Material [52] and
Ref. [36]), enhancing the observable implications.
If the dynamics of the physical scenario is dictated by

potentials with discontinuities at some pth derivative (i.e.,
of class Cp), then the spectra asymptotics reach exactly the
logarithmic boundaries of the pseudospectra [39,51]. The
real ωR

n and imaginary ωI
n parts have the asymptotic

behavior (n ≫ 1)

ωR
n ∼� π

LR ðnþ γ̃Þ; ωI
n∼

1

LR ½γ lnðjωR
n jþ γ0Þ− ln S�; ð1Þ

which defines the so-called “Regge QNM branches”
[39,51]. Reverberations within chambers with a length
scale LR is the mechanism behind the opening of the
spectra into such log-branches [51,53,54]. These are
modulated by “regularity” γ; γ̃; γ0 and “strength” S param-
eters. In particular, Eq. (1) was heuristically observed in
low regularity BH-like potentials [22,23,55,56], and neu-
tron stars w modes [54,57,58].
Detecting QNMs obeying Eq. (1) would be a strong

indication of an underlying low regularity (Cp) potential.
Motivated by such n ≫ 1 pattern, we introduce here a set of
effective parameters, formally evaluated in the limit n → ∞:

LR ≔ π=jΔωR
n j; ðreverberation length scaleÞ; ð2Þ

γ ≔ LRΔωI
n=Δ lnωR

n ; ð“small-scale” structureÞ; ð3Þ
lnS ≔ γ lnðωR

n Þ − LRωI
n; ðperturbation strengthÞ: ð4Þ

The strict applicability of Eqs. (2)–(4) is constrained to
scenarios with nonsmooth (i.e.,Cp<∞) potentials [51,53,54].
For instance, these definitions directly recover the parameters
from the spiked truncated dipole potential [23], namely
LR ∼ xδ − x0 (length of “cavity”) and S ∼ Vδ (perturbation

FIG. 1. Schwarzschild spectrum (red circles) and pseudospec-
trum [log10ðϵÞ gray scale] for the gravitational l ¼ 2 modes. The
latter captures the norm (a positive number) of the resolvent
(essentially, the Green function) of the operator determining the
evolution dynamics [19]. The ϵ-pseudospectra contour lines
(white) delimit the regions where eigenvalues may move under
order-ϵ perturbations of the non-self-adjoint evolution generator. In
BH spacetimes, they spread open (ϵ growing downward), signaling
spectral instabilities. Under perturbations ϵδVk characterized
by small amplitude ϵ ≪ 1 and moderate-to-large wave number
k, the QNM overtones differ significantly from their original
values. Generically, one observes that perturbed branches share
the pseudospectra’s tendency [19] (white circles). Moreover,
internal modes appear (white crosses), with ωI

internal ∼ ωI
branch but

jωR
internalj < jωR

branchj. The displayed crosses and circles in white
arise from a perturbation with parameters ϵ ¼ 10−3 and k ¼ 10.
The inset shows the first few QNMs with ordering labels obeying
ωI
n < ωI

nþ1.
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delta-potential amplitude). Furthermore, polytropic neutron
stars [57] have LR ∼ r� (star’s radius), γ ∼N (polytropic
index), and S∼ “discontinuity jump of the potential.” Further
illustration is found in [51], where the small-scale γ is related
to regularity loss. In the case of smooth C∞ potentials,
available rigorous results for the spectra distribution within
the ϵ-pseudospectra region are less sharp, but QNMs must
always lie above the logarithmic curves [51]. We conjecture
that the QNMs reach the log curves in the large k wave
number ultraviolet limit.
Supporting this statement, we introduce Gn ¼ ωR

n=jωnj to
measure the branch opening. This is a different representa-
tion of the so-called quality factorQn [59,60]. Schwarzschild
QNMs’ asymptotics [61] gives G ≔ limn→∞ Gn ¼ 0,
whereas Eq. (1) yields G ¼ 1. Realistic BH environments
may have an intermediate behavior. Indeed, the upper-left
panel in Fig. 2 shows the monotonic increase of G ∈ ½0; 1�
(for several ϵ’s) with k. The behavior G → 1 as k → ∞
strongly indicates that pseudospectra’s log-boundaries are
attained for k ≫ 1.
Weyl law.—The Weyl law is a spectral concept common

across physical theories [62–64], but scantly explored in
GW physics [65]. A simple count of modes within a circle
in the complex plane provides a typical length scale
for the physical problem. More precisely, let NðωÞ be
the number of QNMs in the radius jωnj < ω (ω ∈ R).
Then, for one-dimensional potentials, the Weyl law
states NðωÞ ¼ 2ðLW=πÞω, with LW a length scale of the

potential. In higher dimensions, the law provides a measure
for the spacetime dimensionality dþ 1 viaNðωÞ ∼ ωd [66].
The actual proof from the theory of scattering resonances
[51,66–68] relies on scenarios modeled by potentials with
compact support or of class Cp. Typical potentials in BH
perturbation theory do not satisfy the theorems’ hypotheses.
Here, we show that BH QNMs indeed follow aWeyl law.

Schwarzschild QNM asymptotics [61] for an angular mode
l yields NlðωÞ ¼ 8Mω, i.e., a scale LW

Sch ¼ 4πM. This
scale connects with the exploration of BH horizon area
quantisation and BH thermodynamics based on QNM
asymptotics [65,69–72], with a link to Hawking temper-
ature via 2LW

Sch ¼ ðTHawkingÞ−1. Besides, summing NlðωÞ
over ðl; mÞ yields NðωÞ ∼ ω3, providing a probe to
measure deviations to the effective spacetime dimension
by counting QNMs.
Weyl’s law remains valid for perturbed BH potentials and

LW is always robustly defined (lower-left panel in Fig. 2). The
changes in LW are not related to the branch opening. Indeed,
we observe jΔωnj constant along them. Rather, the apparent
“phase transition” with “order parameter” LW=LW

Sch shifting
from 1 to O(3) results from an increase of internal QNMs.
Isospectrality loss.—Another outcome of the QNM over-

tone instability is the distinction between axial and polar
GW parities. While both QNM spectra coincide for the
Schwarzschild BH, parity disentanglement is a natural
consequence when the system is slightly perturbed [19].
We observe the existence of three regimes of the

FIG. 2. Left panel: effective measures accounting for QNMs’ distribution. Perturbed potential amplitudes ϵ ¼ 10−17; 10−10; 10−3.
Branch opening is assessed by G ¼ limn→∞ ωR

n=jωnj (top). Schwarzschild QNMs have G ¼ 0, whereas Eq. (1) yields G ¼ 1. The
behavior G → 1 as k → ∞ indicates QNMs migrating toward ϵ-pseudospectra log-lines in the large wave number limit. The Weyl law
length LW (bottom) follows from counting the number of QNMs within a delimited region in the complex plane. The transition
LW=LW

Sch ¼ 1 to O(3) follows from QNMs internal to the branches becoming densely populated. Right panel: isospectrality loss between
axial (red) and polar (blue) parities for gravitational l ¼ 2 modes in Schwarzschild under sinusoidal perturbations ϵδVk with wave
number k ¼ 10, ϵ ¼ 10−18, 10−15, 10−3. The insets show the three different regimes with focus on ϵ ¼ 10−18, 10−15. In the stable regime,
lower QNMs are not affected by instability, thus axial and polar QNMs differ with order ϵ. The “w-mode” regime strongly distinguishes
axial and polar QNMs into an alternating pattern. In the Nollert-Price regime axial and polar QNMs differ again just within order ϵ,
despite the wider branch opening. Transition between the regimes occurs close to internal modes. For high ϵ or k the Nollert-Price
overtakes the stable and w-mode regimes, as for instance, in the case ϵ ¼ 10−3.
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isospectrality loss (Fig. 2): (i) Stable region.—Relatively low
wave number k and small amplitude ϵ perturbations do not
trigger the instability in the first few QNM overtones.
The perturbed QNMs with polar-axial parities stay at a
distance ϵ from their original values. As a result, isospec-
trality loss is then of the same order ϵ as the perturbation, i.e.,
jωaxial

n − ωpolar
n j ∼ CnðkÞϵ [the function CnðkÞ is model de-

pendent; see SupplementalMaterial [52] ].As ϵ ork increase,
the stable behavior is observed by fewer and fewer overtones,
eventually reducing only to the fundamental mode. Near-
future GW observations shall measure both parities in the
fundamentalQNM,whichmay discriminate themechanisms
for the isospectrality loss (e.g., [15,73]). (ii) Alternating
axial/polar w modes.—Moving to higher overtones, parities
drastically separate when QNM instability first occurs.
QNMs of different parity place themselves in an alternating
pattern along the branch, as neutron star w modes do [3,57].
Isospectrality loss is most accessible here, with BHs as
compact star mimickers. We observe ωR

n ∼ lnðωI
nÞ, ωI

n ∼ n
[cf. the contrast with Eq. (1)]. As ϵ or k increases, this regime
descends in ImðCÞ toward the first overtones, eventually
overcoming the previous stable region. (iii) Nollert-Price
regime.—In this third regime, the QNMs migrate further
away from unperturbed ones. We observe the branches
obeying ωI

n ∼ ωR
n ∼ n, the QNM instability (assessed by

the opening of the branch) is stronger than for alternating
w modes. Yet, by studying instances in the range
ϵ ∈ ½10−18; 10−1�, we observe the isospectrality loss to be
again linear in ϵ, as in the stable regime (i). The mechanism
behind this result is unclear. This regime dominates over (i)
and (ii) for sufficiently large ϵ or k (e.g., ϵ ¼ 10−3 in Fig. 2).
Interestingly, the transition between the three sectors

seems to occur precisely upon appearance of an internal
mode. New regimes in far asymptotic regions are not
excluded, but their numerical study is challenging. We find
internal QNMs to be very parity sensitive. In particular, one
may observe internal modes among the first overtones
already for a moderate wave number. For instance, the first
internal mode in Fig. 1 corresponds to n ¼ 2—the QNM
order label follows ωI

n < ωI
nþ1.

Since QNM instabilities are not restricted to the asymp-
totic behavior of QNM overtones, novel features might be
in the near-future detection range. The next section initiates
the discussion from a simple data analysis perspective by
measuring the perturbed QNMs within a numerical GW
time signal. In the section, unbarred and barred quantities
denote dynamics under the unperturbed or perturbed
potential, respectively.
Data analysis.—Our first goal is to assesswhether the time

evolution ϕevolðtÞ of the corresponding wave equation does
contain the perturbed QNMs found in the frequency domain
analysis. BH spectroscopy relies on the approximation

ϕevolðtÞ ≈ ϕN
specðtÞ; ϕN

specðtÞ ¼
XN

n¼0

Ane−iωnt: ð5Þ

This expansion is indeed justified for sufficiently late
times—but prior to the power-law tails [74]—by Lax-
Phillips scattering resonance theory, where expression (5)
is understood as an asymptotic resonant expansion [40–42]
(see also [47,48,75–78]). However, the unexpected nature of
the spectral instability results in Ref. [19] prompts us to
perform an independent assessment to rule out possible
pathological “artifacts” in the frequency domain calculation.
The time-domain scheme underlying Eq. (5) provides
precisely such an independent test.
The second goal in this section is to bring attention to the

need for enhanced algorithms specifically targeting the QNM
instabilities within the waveform. Such data analysis strate-
gies should extend the current detection pipelines processing
data from the GWevents [7–16], in particular a priori QNM
spectra distributions employed in Bayesian approaches.
To address these issues from a proof-of-principle per-

spective, we simulate here an ideal ringdown signal. We
solve the usual unperturbed Regge-Wheeler wave equation
[53] as well as its perturbed version [19] with ϵ ¼ 10−3 and
k ¼ 10. The solutions have numerical noise at the machine
roundoff error [79]. We use the initial data (ID) referred to
as “polynomial” in [76] as they provide a benchmark for the
results on the QNM spectral decomposition Eq. (5) accord-
ing to Refs. [76,77].
Prony’s method [80], an instance of the “harmonic

inversion” method, is used to read complex frequencies
and amplitudes from a signalmodeled byEq. (5) [81]. Table I
compares the “spectral” (frequency domain) QNM values
against those from the Prony’s fitting of the time-domain
signal [82]. We extract three modes in both unperturbed and
perturbed cases, but significant digits are lost on the over-
tones. In the perturbed case, the third inferred mode is
assigned to ω3 due to its remarkable proximity to the
respective “theoretically calculated” frequency. Despite the
loss in significant digits, the accuracy suffices to distinguish
unperturbed from perturbed spectra. The method seems,
however, insensitive to the internal mode ω2.
Hence, the perturbed modes on the NP branches are not

frequencydomain artifacts: theyare indeed in the timedomain
signal and should bemeasurable in GWs if realistic scenarios
trigger the instabilities. However, the presence of internal
modes in the timesignal hasnotyetbeenconfirmed. It remains
to be assessed whether the internal modes are an artifact or,
rather, the particular ID is not efficient to excite them.
To address this issue, we use a semianalytical tool

[76,77,83] to measure excitation factorsAn. They reveal that
the internal modeω2 is verymildly, but unmistakably, excited
(see Supplemental Material [52]): with the employed ID we
getA2 ∼ 10−3,whereasA0 ∼A1 ∼A3 ∼ 10−1. Thus, all per-
turbed QNMs are indeed present in the perturbed GW signal.
The fainter signal explains why Prony’s method bypasses this
internal mode, while its background noise spoils ω1’s and
ω3’s accuracy. An important open question is whether more
realistic ID would excite the internal modes more effectively.
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Discussion.—Building on the general framework
described in Ref. [19], we have focused on the implications
of high-wave-number QNM overtone instability for GW
astrophysics. Specifically, in thisworkwehave (i) introduced
a set of effective parameters (LR; γ; S;G) to characterize
perturbed (open) NP BH QNM branches and probe small-
scale BH environment physics, (ii) identified different
regimes of QNM isospectrality loss and proposed jωaxial

n −
ωpolar
n j as an observational marker of the perturbation size ϵ,

(iii) found a new class of perturbed “internal QNMs,”
signaling the transition between isospectrality loss regimes,
(iv) established the logarithmic asymptotics of QNM-free
regions (pseudospectrum contour lines) and formulated a
conjecture for the high-wave-number limit of Nollert-Price
QNM branches to logarithmic Regge QNM branches on
QNM-free boundaries, (v) introduced a BH Weyl law (and
Weyl scale LW) probing small scale BH physics and
spacetime dimension by counting QNMs, (vi) demonstrated
the theoretical capability to disentangle perturbed from
unperturbed QNMs from the respective (perturbed and
unperturbed) time-domain ringdown signals, in spite of
the tiny difference between the waveforms, and (as a
challenging counterpart to the latter point) (vii) advocated
for the need of developing enhanced data analysis schemes
capable to effectively disentangle observational (in contra-
distinction to theoretical) perturbed and unperturbed GW
ringdownsignals and to copewith the effective degeneracyof
perturbed QNMs, namely a consequence of the universality
[19] of perturbed NP QNM patterns.
Under the assumption that realistic astrophysical scenarios

can trigger thedescribedQNMinstabilities, thepreviouspoints
directly impact the future of BH spectroscopy. Assessing
whether such an assumption is actually realized is a pressing
issue for the correct interpretation of GW observations.
We have focused on high-wave-number QNM overtone

instabilities. Other QNM instability mechanisms have been
proposed [27]. Distinct mechanisms will inform us on
different aspects of BH astrophysics. In particular, in the
present overtone setting, the measure of G and the Weyl
length scale LW are complementary, as they assess the two
novel aspects in this type of high-wave-number QNM

instability: G accounts for the NP branch opening in the
complex plane, whereas LW measures the appearance of
internal modes. Beyond BH environment physics, such
kind of asymptotic overtone diagnostics could offer a
bridge to fundamental gravity physics [84].
We finally stress the timely necessity for liaising the

theoretical results on the fundamental aspects of BH pertur-
bation theory with the current efforts to set goals and
strategies for the GW missions. Detecting QNM overtones
in a noisy signal already imposes a challenging data analysis
task when a deterministic underlying spectrum is a priori
available [11–13,28–30]. The theoretical prediction of BH
QNM instability adds another layer of obstacles, since the
perturbed QNM overtone specific values will generically
incorporate a stochastic component from (random) small-
scale perturbations and only general patterns shall be
available. This strongly indicates that only detections with
very high signal-to-noise ratios will offer eligible candidates
for disentagling BH overtone instabilities. In particular, this
defines a challenging but tantalizing case for LISA science,
requiring the development of specific data analysis tools to
cope with a more intricate parameter degeneracy.
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TABLE I. QNMs for unperturbed and perturbed Schwarzschild potentials via Prony’s method. Crosses are QNMs not identified.

Unperturbed potential ðϵ ¼ 0; k ¼ 0Þ
QNMs Mω0 Mω1 Mω2 Mω3

Spectral �0.37367168 − 0.08896231i �0.3467110 − 0.2739149i �0.3010534 − 0.4782770i �0.2515049 − 0.7051482i
Prony’s Fit �0.37367169 − 0.08896232i �0.34670 − 0.27392i �0.302 − 0.48i × × ×

Perturbed potential ðϵ ¼ 10−3; k ¼ 10Þ
QNMs Mω0 Mω1 Mω2 Mω3

Spectral �0.37364032 − 0.08898850i �0.3401722 − 0.2648723i �0.1367705 − 0.2761794i �0.3735536 − 0.3723973i
Prony’s Fit �0.37364030 − 0.08898850i �0.342 − 0.266i × × × �0.37 − 0.4i
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