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The paradigmatic model for heterogeneous media used in diffusion studies is built from reflecting
obstacles and surfaces. It is well known that the crowding effect produced by these reflecting surfaces slows
the dispersion of Brownian tracers. Here, using a general adsorption desorption model with surface
diffusion, we show analytically that making surfaces or obstacles attractive can accelerate dispersion. In
particular, we show that this enhancement of diffusion can exist even when the surface diffusion constant is
smaller than that in the bulk. Even more remarkably, this enhancement effect occurs when the effective
diffusion constant, when restricted to surfaces only, is lower than the effective diffusivity with purely
reflecting boundaries. We give analytical formulas for this intriguing effect in periodic arrays of spheres as
well as undulating microchannels. Our results are confirmed by numerical calculations and Monte Carlo
simulations.
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Determining the transport properties of tracer particles in
heterogeneous media at large timescales and length scales
has applications in a range of physical problems including
fluid mechanics, hydrology, chemical engineering, soft
matter, and solid state physics [1–4]. The effective diffu-
sivity is a crucial input for problems of mixing [5–7],
sorting [8], chemical delivery [2,9], as well as chemical
reactions [4,6]. Spatial variations of diffusion and advection
can lead to drastic changes in the effective diffusion
constant with respect to homogenous systems. Classic
examples include Taylor dispersion, in hydrodynamic
flows [10], and the decrease of dispersion due to the
energy barriers created by time independent potentials [11].
In a number of systems, such as porous media [12],
zeolites, and biological channels [13], the motion of tracer
particles is hindered by hard (technically speaking reflect-
ing) boundaries or obstacles. The effective trapping of the
tracer in this case is of entropic origin but it again leads to a
reduction of late time diffusivity [14–18]. The effect of the
confining geometry on effective diffusivity has been widely
studied [2,16,19–27], but the vast majority of existing
theories focuses on perfectly reflecting boundaries.
However, the diffusion of a finite size tracer near a

surface is actually much more complicated than that of
simple Brownian motion at a reflecting wall. First, the
tracer will typically be subject to nonspecific interactions
with the surface, for example as the result of van der Waals
long range attraction and electrostatic potentials, that can be
attractive or repulsive, depending on geometry and charges
[3,28]. Second, the components of the diffusion tensor in
the vicinity of the wall are reduced due to the no-slip
boundary condition on the ambient fluid [29]. A simple

minimal model for these effects is that of a tracer particle
that can transiently attach (or adsorb) to, diffuse on, and
detach (desorb) from the surface, thus alternating between
phases of bulk diffusion or surface diffusion (Fig. 1). This
type of model was first proposed in the 1990s when it was
realized that the effective lateral dispersion of molecules
adsorbed at a fluid-solid interface is significantly modified
by temporary excursions into the fluid [30]. The stochastic
motion resulting from interplay of bulk and surface diffu-
sion has recently been directly observed experimentally
[31–35].
It is also known that surface mediated transport gives rise

to nontrivial effects in the context of target search kinetics
[36–39] and that in certain cases the search efficiency can
be tuned via the parameters of the surface mediated diffu-
sion model. A classic related example is the optimization of
search on DNA by alternating phases of one-dimensional
diffusion along the DNA, on which the target site is found,
and three-dimensional bulk excursions [40–42]. It is less

(a) (b)

FIG. 1. Examples of trajectories of a tracer particle diffusing in
the bulk (orange lines) or on the surface (thick blue lines) in a
regular array of spherical obstacles (a) or in a microchannel (b).
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clear if similar optimization effects appear for transport
properties. In Ref. [43], the effect of adding a short range
attraction to otherwise hard spheres was studied numeri-
cally. Remarkably, it was found that spending time trapped
at the surface can lead to an increase in the late time
diffusion of the tracer. The study of [43] neglects the fact
that diffusion near the hard sphere is slowed down and one
is naturally lead to ask the question as to whether the
enhancement effect persists when this is taken into account.
Moreover, for general geometries, there are no theories
predicting this enhancement of dispersion: existing
approaches deal with uniform channels (where the effect
is absent) [44,45] or in fast exchange limit for nonplanar
geometries [4,46,47], where no increase of dispersion due
to sticky surfaces was found.
In this Letter, we introduce a theory that quantitatively

predicts the increase in late time dispersion (with respect to
its value for reflecting boundaries) induced by making the
boundaries attractive, even when the surface diffusivity is
lower than the microscopic bulk diffusivity. As an example,
we give analytical formulas characterizing dispersion in
nondilute spherical sticky obstacles, which explain the
simulation results of [43]. Results are then given for slowly
undulating channels, in this case the increase of dispersion
turns out to be stronger. For strongly undulating channels,
we show that enhancement of dispersion no longer occurs.
Our results identify in which situations dispersion is
optimized by the interplay between diffusion in bulk and
on the surface. The effect uncovered here can be viewed as
an example of catalysis for diffusion where the introduction
of the surface state via reaction with the surface induces an
increase in the rate of dispersion.
Model of surface mediated transport.—We consider a

tracer particle, of position rðtÞ at time t in a d-dimensional
space, a heterogeneous medium with obstacles, or confin-
ing boundaries. The particle can either diffuse in the bulk
(“b”), with a bulk molecular diffusivity Db, and local drift
ubðrÞ, or diffuse along the surface (“s”) of the obstacles or
confining surface, where it diffuses with diffusion co-
efficient Ds (typically smaller than Db). In our approach,
we assume that the tracer particle is pointlike. This
assumption can be made without loss of generality since
the problem of a finite size tracer particle can be studied by
modifying the obstacle geometry. In this way, the particle
size influences the effective diffusivity. We will also neglect
inertial effects, which are irrelevant for sufficiently small
tracers in viscous fluids. We can also consider a local drift
field usðrÞ, within the surface. By kd we denote a detach-
ment rate at which the tracer desorbs from the surface.
When the transition between bulk and surface is viewed as
a reaction, the binding kinetics is quantified by an imperfect
reactivity parameter ka [48], which has the dimension of a
velocity. In the context of Taylor dispersion it has been
shown how the parameters ka and kd can be determined
from a microscopic model [49].

The probability densities pbðr; tÞ and psðr; tÞ to be at
position r at time t in the bulk and surface obey

∂pb

∂t ¼ ∇ · ½Db∇pb − ubðrÞpb�; ð1Þ

∂ps

∂t ¼ ∇s · ½Ds∇sps − usðrÞps� − kdps þ kapb; ð2Þ

where ∇s is the surface nabla operator. The boundary
conditions, determined from probability conservation, are
given by

n · ½Db∇pb − ubðrÞpb� ¼ kdps − kapb; ð3Þ

where n is the surface normal vector, pointing away from
the bulk. Finally, we assume that the geometry of the
medium, as well as all fields ubðrÞ, usðrÞ, are spatially
periodic.
Effective transport properties.—The late time transport

properties in a given spatial direction (say, the x direction)
are quantified by an effective drift ve and effective diffu-
sivity De in this direction:

ve ¼
xðtÞ− xð0Þ

t
; De ¼ lim

t→∞

½xðtÞ− xð0Þ− vet�2
2t

; ð4Þ

where the overline denotes the average over stochastic
trajectories. The average drift is straightforward to calculate
[see Supplemental Material (SM) [50] ]

ve ¼
Z
V
drð∇xÞ · jb þ

Z
S
dSð∇sxÞ · js; ð5Þ

jb ¼ ðub −Db∇ÞPst
b ; js ¼ ðus −Ds∇sÞPst

s ; ð6Þ

where the integrals are evaluated over the volume V and the
surface S of the walls in one period. The functions Pst

b ðrÞ
and Pst

s ðrÞ are the stationary probability densities of the
position modulo the period and are time-independent
solutions of Eqs. (1) and (2) with periodic conditions.
To compute De in the absence of any advection, we use

the fluctuation dissipation theorem that relates it to the
effective drift when a small force F acts on the tracer
particle:

DeðF ¼ 0Þ ¼ kBT ×

�
d
dF

veðFÞ
�
F¼0

; ð7Þ

where kBT is the thermal energy. Here, a force F in the
x direction corresponds to the following drift fields:

ubðrÞ ¼ βDbFð∇xÞ; usðrÞ ¼ βDsFð∇sxÞ; ð8Þ

with β ¼ 1=kBT. At zero force, we denote the stationary
probability densities by Pst;0

b , Pst;0
s , both are uniform and

are given by
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Pst;0
b ðrÞ ¼ 1

V þ Sδ
; Pst;0

s ðrÞ ¼ δPst;0
b ; ð9Þ

where δ ¼ ka=kd is an adsorption length (that can be much
larger than the range of interactions with the surface). The
length δ quantifies how “sticky” the surface is, with
surfaces becoming nonreflecting in our problem when δ
is comparable to V=S, in which case the fraction of time
spent on the surface become significant. We now introduce
two auxiliary fields fb and fs which quantify the deviation
of the stationary probability density from the uniform
distribution at low forces:

Pst
b ≃ Pst;0

b þ βFfbðrÞ; Pst
s ≃ Pst;0

s þ βFfsðrÞ: ð10Þ

Inserting this ansatz into Eqs. (5) and (7), we see that
DeðF ¼ 0Þ (denoted simply by De) is given by

De ¼ Db

Z
V
drð∇xÞ ·∇½Pst;0

b x − fb�

þDs

Z
S
dSð∇sxÞ ·∇s½Pst;0

s x − fs�: ð11Þ

The equations for fb, fs are obtained by inserting the ansatz
(10) into the transport equations (1), (2), (3) and expanding
to linear order in F, which yields

∇2fb ¼ 0; Ds∇2
s ½fs − Pst;0

s x� ¼ kdfs − kafb; ð12Þ

Dbn ·∇fb ¼ kdfs − kafb þDbP
st;0
b ð∇xÞ · n: ð13Þ

The above equations, together with periodic boundary
conditions, define fb and fs up to an unimportant additive
constant. This kind of formula linking micro- and macro-
transport properties can also be found in macrotransport
theory [4], homogenization methods or Kubo formulas
[55,56]. In the case of surface mediated transport, the above
equations are general and in the limit of fast exchange
between bulk and surface (kd; ka → ∞ keeping ka=kd
constant) reproduce the results given in [4,46,47]. Note
that surface curvature effects arise in Eq. (12) via the term
∇2

sx which does not vanish (as it would in the bulk). The
above partial differential equations can be numerically
solved by standard finite element routines. However we
will also derive analytical results in certain limits.
Dispersion in regular arrays of spheres.—One the most

studied models of a crowded environment is that of a
regular array of spherical obstacles. Here, we consider the
cases of a square lattice (in 2D, d ¼ 2) or a cubic lattice (in
3D, d ¼ 3), see Fig. 1(a). We denote by L the distance
between the centers of nearest neighboring spheres, R their
radius, and φ their volume fraction. An exact analytical
expression for the dispersion for any φ is difficult to obtain
even without the surface interactions. However, in the limit
of small R=L (equivalently, the small φ limit), we can look

for solutions in terms of matched asymptotic expansions,
with an inner solution for fbðrÞ that varies at the scale
jrj ∼ R, and an outer solution varying at the scale L. The
auxiliary fields in the limit R → 0 are written as

fbðrÞ ¼

8>><
>>:

P
n≥0

Rnþ1fðnÞb ðr=R;ωÞ ðr ≪ L; innerÞ
P
n≥0

RdþnFðnÞ
b ðr;ωÞ ðr ≫ R; outerÞ

; ð14Þ

where r is the distance to the center of the nearest obstacle
and ω denote angular variables. The solutions at successive
orders are found by inserting Eq. (14) into our formalism
and imposing that both outer and inner solutions are equal
in the regime R ≪ r ≪ L (where they are both valid). To
order φ4 (see SM [50]), we find

De ¼
Db

1þ ðdξ− 1Þφ
1− αφ

1þ αφ=ðd− 1Þ þ oðφ4Þ;

α ¼ Db þDsξðγ − 1Þðd− 1Þ
Db þDsξ½γðd − 1Þ þ 1� ; γ ¼ Db

kaR
; ξ ¼ δ

R
:

ð15Þ

The above formula is exact up to the order φ4 in the small φ
limit, when ξ and γ are kept constant. It is valid for a large
range of values of φ, as shown in Fig. 2 where it is
compared to numerical solution of the full transport
equations (12) and (13). The theory also agrees with the
Monte Carlo simulations of Ref. [43]. This expression (15)
is a generalization of similar Maxwell type formulas
obtained for reflecting obstacles, see, e.g., Refs. [57–60].
We can define a critical surface diffusivity D�

s as the

FIG. 2. Long-time dispersion for a periodic array of spherical
obstacles (d ¼ 3) with Ds ¼ Db. Lines: theoretical prediction,
Eq. (15). Squares: data obtained by numerical integration of
Eqs. (12) and (13). Triangles: results of stochastic simulations of
the stochastic process rðtÞ associated to the Fokker-Planck
equations (1) and (2). Circles: Monte Carlo simulation data taken
from [43], where the tracer particles are submitted to an exponen-
tially decaying potential. The parameter δwas adjusted so that the
stationary probability densities (9) in our description are the same
as in the case of this potential (see SM for details [50]).

PHYSICAL REVIEW LETTERS 128, 210601 (2022)

210601-3



value ofDs above which a weak attraction increasesDe (so
½∂De=∂δ�δ¼0 ¼ 0 at Ds ¼ D�

s). Using Eq. (15), we find

D�
s ¼ Db

�
1 −

1 − φ

d

�
: ð16Þ

Interestingly, D�
s depends only on φ and is independent

of the adsorption and desorption rates. At this level
of perturbation theory we also see that D�

s < Db.
Consequently, if the surface and bulk diffusivities are equal
(Ds ¼ Db), making the surfaces weakly attractive generi-
cally increases dispersion. This effect holds even when
Ds < Db (as long as Ds > D�

s). Hence, spending time on a
surface, even with reduced diffusion, can actually lead to
faster dispersion than in the case of purely reflecting
obstacles. A similar formula to Eq. (15) was found in
Ref. [61] in the fast exchange limit (γ ¼ 0), however this
formula does not predict an increase of dispersion for
weakly attractive spheres, and it disagrees with our theory
and with numerical simulations (see SM [50]). Finally, the
increase inDe is rather marginal in this geometry, as can be
seen in Fig. 2.
Dispersion in slowly undulating channels.—We now

analyze the case of a surface-mediated diffusion process in
a symmetric channel of half-width hðxÞ (if d ¼ 2) or in an
axisymmetric channel of radius hðxÞ (if d ¼ 3), see
Fig. 1(b). Such geometries are often viewed as a paradigm
for transport in confined media [14,17]. We consider the
limit of slowly varying undulations (L → ∞), where the
problem can be solved using a perturbation expansion:

fb ¼
X
n≥0

1

Ln f
ðnÞ
b

�
x
L
; r⊥

�
; fs ¼

X
n≥0

1

Ln f
ðnÞ
s

�
x
L

�
;

ð17Þ

where r⊥ is the position perpendicular to the direction x.
Inserting the above ansatz into our formalism and writing
all equations order by order, we obtain (see SM [50])

De ¼
L→∞

1

hhd−2½hþ ðd − 1Þδ�ih h2−d
Dbhþðd−1ÞDsδ

i ; ð18Þ

where h·i ¼ ð1=LÞ R L
0 ·dx denotes the spatial average over

one period L. Note that De is not given by a simple steady
state average between effective bulk diffusion and surface
diffusion as it is the case for a flat channel [44]. For
reflecting walls (δ ¼ 0), we recover the well known result
obtained with the Fick-Jacobs approximation, Deðδ¼0Þ¼
Db½hhd−1ihh−ðd−1Þi�−1 [16,24]. Once again, defining D�

s as
the value of Ds for which ½∂De=∂δ�δ¼0 ¼ 0, we find

D�
s ¼ Db

hhd−2ihh1−di
hhd−1ihh−di : ð19Þ

It can be shown thatD�
s is smaller thanDb for any choice of

profile h. Figure 3 illustrates the increase of dispersion
when surfaces are made weakly attractive for one example
of a two-dimensional channel. Interestingly, the increase of
dispersion can be as high as 250% (upper curve), this
change could be made arbitrarily high for sharper channel
undulations. The enhancement effect can thus be signifi-
cantly larger than that observed for sticky spheres as
studied above and in Ref. [43].
It is clear that the enhancement of diffusion is related to

the fact that diffusing along the surface avoids bottlenecks
(or entropic barriers) in the channel. However, the effect of
the surface interaction is more subtle than just this basic
effect. As seen in Fig. 3 from the curve with solid circles, a
finite interaction with the surface can enhance diffusion
with respect to both the case δ ¼ 0 (pure reflection) and
δ → ∞ (diffusion restricted to the surface), even when the
surface diffusion is 30% of that of bulk diffusion. Actually,
it can be shown that when Deð0Þ ¼ Deð∞Þ, then the
inequality Ds > D�

s always holds (see SM [50]). Hence,
for any channel geometry, there is a regime for which the
effective diffusivity is larger than the effective diffusivity
for completely reflecting (δ ¼ 0) or completely sticky
(δ → ∞) boundaries. The subtlety of the effect is also
highlighted by the earlier results on spherical obstacles,
where the enhancement effect actually shows up at first
order in the volume fraction, thus in absence of significant
bottlenecks.
Dispersion in highly undulating channels.—Finally, we

investigate rapidly varying channels (L ≪ a,witha themini-
mal channel height), for which we obtain (see SM [50])

De ¼
L≪a

Vc

V þ Sδ
Db; ð20Þ

where Vc is the volume of a central region (a cylinder
of radius a, so Vc ¼ 2aL in 2D and Vc ¼ πa2L in 3D).

FIG. 3. Longtime diffusion coefficient for a two-dimensional
channel of height profile h=a ¼ 16þ 15 arctan½cos u=ðsin uþ
3=2Þ�= arctanð2= ffiffiffi

5
p Þ with u ¼ 2πx=L. Symbols: results of the

numerical integration of Eqs. (12) and (13) for kaa=Db ¼ 10 and
L=a ¼ 500; for this value the channel shape is shown in the inset.
Lines: predictions of Eq. (18) in the limit of slowly varying width.
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This formula can be deduced from a simple ergodic argu-
ment. In the central region, the tracer particle can freely
diffuse, but in the peripheral regions made of very thin dead
ends, the tracer particle does not contribute to dispersion
along the channel axis (at leading order). Hence, the late
time diffusivity is the product ofDb with the fraction of time
spent in the central region, leading to Eq. (20). In this
geometric limit, we see that surface interactions only
decrease dispersion.
Conclusion.—It is well established that first passage

kinetics to a target can be optimized by an appropriate
combination of Sojourn of diffusion in spaces of different
dimensions [36,37,41], as exemplified by the search of a
gene sequence on DNA [40–42]. However, this optimiza-
tion is not linked to an acceleration of diffusivity. Here, we
have theoretically demonstrated a similar optimization
effect holds for transport features: dispersion in crowded
media can be enhanced if the obstacles or surfaces exhibit a
short ranged attraction for the tracer. This enhancement
phenomenon was first noted in Ref. [43] for hard spheres.
Using a surface mediated diffusion model, we have
developed a general transport theory to analyze the effect
of short range attractive interactions on dispersion. This
theory explains the results of Ref. [43] and we have
provided analytical results for dilute systems (which work
rather well even for large volume fractions). We have also
analyzed dispersion in symmetric channels where the
particle can adsorb and detach from the walls. For slowly
undulating channels, we have shown that an even stronger
diffusion enhancement can occur and have given exact
results. In both geometries, we find that even when the
surface diffusion constantDs is smaller than that in the bulk
Db (as must be the case physically) this enhancement can
still occur and we have determined the critical values of Ds
above which this happens.

Computer time for this study was provided by the
computing facilities MCIA (Mesocentre de Calcul
Intensif Aquitain) of the Université de Bordeaux and of
the Université de Pau et des Pays de l’Adour.
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