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We report on the experimental measurement of the dispersion relation of the density and spin collective
excitation modes in an elongated two-component superfluid of ultracold bosonic atoms. Our parametric
spectroscopic technique is based on the external modulation of the transverse confinement frequency,
leading to the formation of density and spin Faraday waves. We show that the application of a coherent
coupling between the two components reduces the phase symmetry and gives a finite mass to the
spin modes.
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The concept of collective excitations is a cornerstone for
our understanding of the physics of condensed matter
systems. In particular, arguments based on their dispersion
relation have provided first insight on the microscopic
origin of superfluidity in liquid helium [1]. In the specific
case of dilute atomic Bose-Einstein condensates (BEC), the
Bogoliubov theory, based on a linearized quantum theory
around a condensate, provides quantitative predictions for
the dispersion relation, with a gapless (massless) sonic
behavior at small wave vectors followed by a quadratic
single-particle one at larger wave vectors [2].
The situation gets more interesting in the case of

two-component superfluids, whose collective excitation
spectrum consists of two gapless branches for the sponta-
neously broken Uð1Þ × Uð1Þ symmetry due to the con-
servation of particle number in each component. For equal
masses and interaction constants of the two components,
the two branches are associated with oscillations of the
total density or of the density difference, the so-called
“density” and “spin” modes [3]. At low k, both branches
have a linear dispersion, yet with generally distinct values
of the speed of sound. If the particle number in each
component is not conserved, e.g., by applying a field that
coherently couples the two components, exciting the
condensate relative phase requires an energy cost. As a
result, while the massless nature of the total density mode
is protected by the Goldstone theorem associated with
the remaining U(1) symmetry, the spin mode acquires a
finite mass [4].
Precise information on the Bogoliubov dispersion of

single-component condensates was extracted using Bragg
spectroscopy [5]. Parametric excitation of a superfluid was
pioneered using a time-dependent modulation of the optical
lattice depth [6–9], by acting on the transverse potential of
an elongated harmonically trapped BEC [10–12] or through
a modulation of the interaction constant [13–15]. Distinct

spin and density sound velocities were measured in a two-
component sodium system by locally perturbing the system
with spin sensitive or insensitive potential [16]. Two-
dimensional bosonic superfluids [17] and strongly inter-
acting superfluids [18,19] were also recently investigated.
In this Letter, we apply the parametric excitation

technique to the novel case of a two-component BEC of
ultracold sodium atoms in two spin states. A well-con-
trolled generation of Faraday waves in both the density and
in the spin channel allows us to perform a first quantitative
and complete measurement of the dispersion relation of the
two branches of collective density and spin excitations.
In an intuitive way, one can understand the parametric

excitation process as the emission of a pair of phonons (of
frequency ωM=2 and opposite wave vectors �k) by some
classical external drive at ωM, as sketched in Fig. 1. The
two modes lead to a spatial pattern oscillating in time,
known as a Faraday wave [see Fig. 2(b)]. Its spatial
periodicity is 2π=k and its visibility oscillates in time at
ωM (see, e.g., [20]).
As pictorially shown in Fig. 1, the parametric process is

active on both density and spin channels (hereafter labeled
as d and s). In particular, energy-momentum conservation
predicts different values for the wave vector k of the emitted
density and spin excitations. Concretely, for a coherently
coupled BEC of atoms with mass m, the dispersion
relations read (see Ref. [3] and references therein) as
follows:
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Here, μd;s ¼ ðg� g12Þneff;d;s=2 are the effective chemical
potentials for the density and spin channels, where g and
g12 are the intra- and intercomponent interaction constants,
and neff;d ¼ n0=2 and neff;s ¼ 2n0=3, the effective densities
after properly including the effects of the geometrical
reduction [21]. The strength of the coherent coupling,
which breaks the relative atom number conservation, is
given by the Rabi frequency ΩR. For small k and ΩR ¼ 0,
both channels, Eqs. (1) and (2), show the soniclike behavior
ωd;sðkÞ ≃ cd;sjkj with speeds of sound cd;s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μd;s=m

p
.

The coherent coupling ΩR has no effect on the density
branch, while a frequency gap ωp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΩRðΩR þ 2μs=ℏÞ
p

opens in the spin branch, which then turns massive,
ωsðkÞ ≃ ωp þ ℏk2=ð2MÞ, with an effective mass M ¼
2mωpΩR=ðω2

p þ Ω2
RÞ. As already mentioned, the presence

of a gap at k ¼ 0 in the spin channel originates from the
explicit breaking of the continuous symmetry U(1), related
to the conservation of the relative particle number. For
noninteracting atoms the gap is simply ΩR and corresponds
to the energy cost to slightly move the ground state from its
position, i.e., the cost to modify the relative phase of the
two hyperfine wave functions locked by an external drive.
In the presence of many-body interactions, the problems
becomes equivalent to the so-called internal Josephson
effect [24,25] and ωp corresponds to the frequency of small
oscillations around the homogeneous ground state, which
for this reason is also called plasma frequency (see the
recent review Ref. [26] and reference therein).
We start our experiments by preparing a BEC of 106 23Na

atoms in the jF;mFi ¼ j1;−1i internal state, F being the
total atomic angular momentum and mF its projection on

the quantization axis, set by a uniform magnetic field [27].
The BEC (with negligible thermal component) is held
in a cylindrically symmetric single-beam optical trap
with trapping frequencies ω⊥=2π ¼ 1 kHz and ωx=2π ¼
10 Hz, leading to a Thomas-Fermi profile with radii
r⊥ ¼ 3 μm and rx ¼ 300 μm for the transverse and longi-
tudinal directions, respectively.
The two-component BEC is then prepared through an

adiabatic rapid passage sequence [28,29], which coherently
transfers half of the atomic population to the j1; 1i state,
using a two-photon microwave transition [21]. At the end
of the adiabatic rapid passage, the microwave drive is either
completely switched off (experiments in Figs. 2 and 3) or
kept on at the desired value of the coherent coupling
between the two components (experiments in Fig. 4).
As done in Ref. [10], we induce Faraday waves by

modulating the transverse trapping frequency as ω⊥ðtÞ ¼
ω⊥ð0Þ½1þ α sinðωMtÞ�, with frequency ωM and amplitude
α ∈ ½0.38–0.6� [Fig. 2(a)]. The modulation is applied for
a time t ∈ ½50–400� ms. Since ωx ≪ ωM < ω⊥ðtÞ, the
transverse size adiabatically changes in time following
the periodic compression and decompression of the poten-
tial. In this way no transverse excitation is generated.
Conversely, axial modes can be excited, leading to

FIG. 1. Generation mechanism of excitation pairs in the density
and spin branches of a two-component system. The external
excitation at ωM is converted into two excitations with opposite
wave vectors and half the energy. In the absence of coupling
between the two components, ΩR ¼ 0 (left), two symmetries are
preserved and both modes have a linear behavior, with density
speed of sound cd and spin speed of sound cs. When a coherent
coupling is present, ΩR ≠ 0 (right), one of the two symmetries is
broken, introducing a curvature in the spin dispersion relation,
which makes the excitation acquire a mass.

FIG. 2. Density and spin Faraday patterns. (a) Sketch of the
experimental configuration. The transverse trapping frequency is
modulated in time at frequency ωM, periodically compressing the
elongated condensate. (b) The parametrically generated excita-
tions appear as a spatial pattern with a well-defined wave-
length along the axis of the condensate. (c) Density (red) and
spin (blue) 2D experimental patterns and corresponding inte-
grated 1D profiles for ωM=2π ¼ 400 Hz (left) and ωM=2π ¼
200 Hz (right).
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longitudinal (1D) Faraday waves [20,30]. At the end of the
modulation, the trapping potential is suddenly removed and
the atoms in the j1;−1i (j1;þ1i) state are selectively
imaged after a short time of flight of 2 ms (3 ms) [Fig. 2(b)].
Because of the short duration of the time of flight stage,
our very elongated condensate expands only in the trans-
verse directions, leaving the axial distribution practically
unchanged. We can therefore integrate the absorption
images displayed in Fig. 2(b) over the transverse directions
to extract the 1D densities n� in the j1;�1i spin states and,
from these, the total density ðnþ þ n−Þ and spin ðnþ − n−Þ
profiles along x. In Fig. 2(c), we present typical profiles
in the absence of coherent coupling for two different
values of the modulation frequency. Depending on the
modulation frequency, we observe that a periodic pattern
can be formed in the density (left) or in the spin (right)
profiles.
The strength and periodicity of the spatial modulations

can be quantified by calculating the power spectral density
(PSD) of the 1D profiles as follows:

PSDd;sðkÞ ¼
����
Z

ðnþ � n−Þeikxdx
����
2

: ð3Þ

To suppress inhomogeneous broadening effects, we restrict
the analysis to the central 300 μm of the condensate [white
region in Fig. 2(c)].
Examples of the time evolution of the PSD are shown in

the insets of Figs. 3(a) and 3(b). The PSD displays periodic
oscillations at specific values of k, with the same frequency
of the modulation. This behavior is typical of Faraday
waves and in close agreement with the theoretical pre-
dictions for a single-component condensate [20,30]: the
visibility of both spin and density excitations is maximal in
time when ω⊥ðtÞ is minimum [t ¼ ð2nþ 3=2Þπ=ωM with
n ∈ Z]. Being spin and density excitations always in phase,
the ratio between the two visibilities remains constant
within a modulation period. While the position of the PSD
peak is stable, its absolute height is strongly dependent on
the chosen values of the modulation strength and duration.
In order to optimize the visibility of the features for all
the modulation frequencies, the duration or amplitude of
the modulation is empirically optimized and the atoms are
released always at times corresponding to a minimum in
ω⊥ðtÞ (see insets in Fig. 3). This protocol allows us to
obtain the PSD as a function of the modulation frequency
ωM and the wave vector k of the induced pattern reported as
color plots in Figs. 3 and 4.
The values of k for which the pattern is strongest follow

extremely well the theoretically predicted dispersion rela-
tions [Eqs. (1) and (2)] with ΩR ¼ 0, as reported in Fig. 3.
Here, the only nontrivial parameter is the BEC peak
density n0 of the 3D distribution, which is independently
calibrated by measuring the plasma frequency of the
two-component BEC at the center of the cloud [21,29],

leading to the estimated chemical potentials μd=h ¼ 3 kHz
and μs=h ¼ 145 Hz.
In the density channel, the k position of the peak depends

linearly on the modulation frequency as k ≃ ωM=ð2cdÞ,
since all the probed frequencies are well in the sonic region
of the dispersion relation ωM ≪ μd=ℏ. In contrast, in the
spin channel the linear dependence k ≃ ωM=ð2csÞ is
restricted to modulation frequencies ωM ≲ 2μs=ℏ, whereas
for larger ωM, a deviation from the linear behavior is
observed, in agreement with the supersonic nature of the
Bogoliubov dispersion.
We notice that a residual signature of the spin modes is

visible on the density spectra and vice versa [see dashed
lines in Figs. 3(a) and 4(b)] This originates from a weak
coupling between the spin and density modes due to slight
imbalance of the density in the two spin states, as well as
from some crosstalk between the two spin components in
the imaging technique [29].
We turn now to the analogous measurement performed in

the presence of the coherent coupling ΩR ≠ 0, shown in
Fig. 4. In order to observe collective behaviors in the spin
channel, we need to have ℏΩR < 2μs, a condition that
ensures also that the adiabaticity condition is fulfilled,
having ωp ≪ ω⊥. Operating in this regime is experimen-
tally possible thanks to the μG-level stability in the
magnetic field that is provided by the magnetic shielding
surrounding our setup [21,31]. This magnetic field stability
corresponds to a frequency stability of the atomic reso-
nance at the level of a few Hz.

FIG. 3. PSD of density (a) and spin (b) excitations as a function
of the modulation frequency. The thick lines indicate theoretical
predictions [Eqs. (1) and (2)] for the dispersion relations (dark)
and subharmonics (light) (see text), with ΩR ¼ 0 and no fitting
parameters. The line thickness corresponds to one standard
deviation confidence interval originating from the uncertainty
in the atomic density. Insets show the modulation amplitude in
time and the corresponding fringe visibility for ωM=2π ¼
200 Hz. The dashed line in panel (a) indicates the position of
the spin branch, where a spurious signal is present due to the
crosstalk between spin and density modes.
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The results for ΩR ≠ 0 are discussed in the following,
with peculiar attention to (i) the massive dispersion in the
spin channel; (ii) the sonic dispersion in the density
channel, unaffected by the coherent coupling; and (iii) the
scaling of the gap with ωp.
We verified, both numerically and experimentally, that

the formation of the spin pattern occurs on much faster
timescales, as compared to the case ΩR ¼ 0, when the
modulation frequency ωM is close to 2ωp. Therefore, in
order to access all the above mentioned points, different
values of the amplitude and modulation time were used for
the datasets shown in Figs. 4(a) and 4(b).
To address point (i), we use a short modulation time that

allows one to obtain a clean signal in the spin channel around
ωM ≃ 2ωp, showing the massive character of spin collective
excitations [Fig. 4(a)]. This choice inhibits the observation of
the dispersion relation in the density channel (see the inset).
To overcome such a difficulty, we increase depth and duration
of the periodic driving and the corresponding measurement
is shown in Fig. 4(b): the inset reveals how the excited
wave vector k still depends linearly on ωM, regardless of the
coherent coupling [point (ii)]. Unfortunately, at such long
modulation times, spin modes around the plasma frequency
are excited strongly in the nonperturbative regime, which
results in the broadening of the spectrum in k space: hence,
the blue horizontal stripes in Fig. 4(b) should not be confused
with the expected dispersion relation Eq. (2).

For what concerns point (iii), the different values of
ΩR=2π ¼ 33 Hz and ΩR=2π ¼ 80 Hz in the datasets of
panels (a) and (b) of Fig. 4 illustrate the scaling of the gap
size with ωp. In the spin channel an appreciable signal is
only visible above 2ωp. Above this point, the k position of
the peak remains in very good agreement with the expected
massive dispersion relation of the spin excitations (con-
tinuous black line). For the data in Figs. 4(a) and 4(b), the
effective mass is about 25% and 75% of the atomic mass,
respectively.
While the dispersion relations [Eqs. (1) and (2)] are

consistent with the dominant signal in the PSD of Figs. 3
and 4, the additional signals at subharmonic frequencies
(gray lines) are typical of Faraday instabilities described in
terms of the Mathieu equation [21], which is known to show
instability (resonance) regions aroundωM ¼ 2ωðkÞ=l, with l
a positive integer number [32]. We verified that such signals
are not originated by residual anharmonicities of the optical
trap modulation.
In conclusion, in this Letter we have made use of a

parametric excitation technique to perform a detailed
measurement of the dispersion relation of the longitudinal
density and spin collective excitations of an elongated
two-component BEC. The accuracy and flexibility of
our spectroscopic technique directly hint at its application
to more complex phenomena in quantum mixtures.
Specifically, in the case of an interspecies interaction larger
than the intraspecies one, we could study spin excitations
when crossing the ferromagnetic phase (see Ref. [3] and
reference therein). Another relevant application of our
technique would be the study of the dispersion relations
in the various phases of spin-orbit coupled mixtures.
Particularly interesting is the rotonization of the spectrum
and the appearance of a new Goldstone mode in the so-
called stripe phase (see Ref. [33] and reference therein).
It is also worth mentioning that the parametric excitation

of the spin modes in our system is essentially equivalent to
the so-called parallel pumping amplification, which has
been taking on a very important role in magnonics [34]. In
this respect, a byproduct of the present work is to provide
further evidence that our platform, as already shown in
[35], provides new insights in the dynamics of magnetic
materials.
From a yet different perspective, analog models [36]

based on two-component atomic BECs are a promising
platform for quantitative studies of quantum field theories
on curved space-times, such as cosmological particle
creation and analog Hawking radiation [37–40]. In par-
ticular, the control on the mass of the spin excitations,
which was demonstrated here via coherent coupling, is of
great interest in view of extending this research to the case
of massive fields interacting with the gravitational back-
ground. On a longer run, the complex dynamics obtained
when the externally imposed modulation of the trap
parameters is replaced with an excitation of the transverse

FIG. 4. PSD of the spin excitations in the presence of a coherent
coupling. In (a), ωp=2π ¼ 120 Hz, ΩR=2π ¼ 33 Hz, and μs=h ¼
225 Hz; in (b), ωp=2π ¼ 175 Hz, ΩR=2π ¼ 80 Hz, and μs=h ¼
150 Hz. The thick lines indicate the theoretical predictions
[Eqs. (1) and (2)] for the dispersion relations (dark) and
subharmonics (light) (see text). The line thickness corresponds
to one standard deviation confidence interval originating from the
uncertainty in the atomic density. Insets show the corresponding
PSD of the density channel (unaffected by the coupling). The
dashed line in panel (b) indicates the position of the density
branch, where a spurious signal is present due to the crosstalk
between spin and density modes.
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degrees of freedom of the BECmay provide information on
backreaction phenomena of the quantum field theory on the
background space-time [41].
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