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To rotate continuously without jamming, the flagellar filaments of bacteria need to be locked in phase.
While several models have been proposed for eukaryotic flagella, the synchronization of bacterial flagella
is less well understood. Starting from a reduced model of flexible and hydrodynamically coupled bacterial
flagella, we rigorously coarse grain the equations of motion using the method of multiple scales, and hence
show that bacterial flagella generically synchronize to zero phase difference via an elastohydrodynamic
mechanism. Remarkably, the far-field rate of synchronization is maximized at an intermediate value of
elastic compliance, with surprising implications for bacteria.
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Motile eukaryotic cells propelled by slender flagella or
cilia have long been known to display a feature essential
to locomotion: the synchronization of their swimming
appendages [1,2]. From nearby spermatozoa matching
the beating pattern of their flexible flagella, to ciliary
carpets that actively pump fluids in a coordinated fashion,
the synchronization of eukaryotic flagella and cilia is
ubiquitous [3,4]. Multiple physical factors can induce
synchronization, including direct hydrodynamic inter-
actions between the filaments [5,6], elastic coupling
through intracellular features [7,8], steric interactions [9],
and coupling through the motion of the cell body [10,11].
The mechanisms for synchronization have been uncovered
by theoretical studies [12–21], among which a popular
minimal approach is to model the tips of eukaryotic flagella
and cilia as particles undergoing periodic motion above a
rigid surface representing the cell [22–27].
For prokaryotic cells, the question of synchronization

is especially important for peritrichous bacteria equipped
with multiple propulsion-inducing flagella, such as the
model organism Escherichia coli [28]: their helical flagellar
filaments rotate passively under the actuation of molecular
motors embedded in the cell wall and form coherent
bundles behind the cell body, pushing the bacterium
forward when it swims in a straight “run” [29]. The
geometrical constraints imposed by the helical shape
require the flagellar filaments to be in phase with each
other to form smoothly rotating bundles [30]. The level of
synchronization between filaments is expected to influence
the propulsive efficiency of the bundle, while intermittent
loss of synchronization may contribute to the initiation of
“tumble” events [31,32].
Compared to eukaryotic flagella, the fundamental mech-

anisms of synchronization in rotating bacterial flagella are
not yet fully understood. Computational studies have

shown that some form of elastic compliance is necessary
in addition to hydrodynamic interactions, since hydrody-
namically coupled helices rotating rigidly about a fixed axis
do not synchronize [33,34]. Simulations have also revealed
that the balance between bundling and synchronization
times depends strongly on the initial separation between the
filaments [35] and that filaments may slip out of synchrony
if driven by unequal torques [32]. Experimental studies on
the synchronization of rotating bodies include systems of
light-driven microrotors [36] and of macroscopic-scale
rotating paddles [37].
In this Letter, we provide a microscopic physical model

for the dynamics of compliant bacteria flagella and use the
method of multiple scales to rigorously coarse grain the
equations of motion for two flagella interacting in the far
field into an evolution equation for their mean phase
difference. The model, illustrated in Fig. 1, preserves the
salient features of the bacterial flagellum: the rotary motor
operating near constant torque [38], the left-handed helical
shape of the semi-rigid flagellar filament [39], and the
flexible connection between motor and filament via the
flagellar hook [40]. In contrast to empirical models, our
bottom-up approach includes all geometrical and dynami-
cal details, thereby allowing us to derive the explicit
dependence of the synchronization rate on the shape and
dynamical properties of the bacterial flagellum. The theo-
retical predictions of our model are verified by numerical
simulations (Fig. 2), are shown to remain relevant beyond
the far-field limit [41], and are elucidated by a physically
intuitive explanation of the mechanism for synchronization,
which emerges from the elastohydrodynamic balance on
individual filaments (Fig. 3). Remarkably, we show that the
rate of synchronization is maximized at intermediate values
of elastic compliance, with significant implications for the
biophysics of swimming bacteria.
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To model the far-field interactions between bacterial
flagella, we consider two identical and parallel rigid helices
of length L, each rotating in a viscous fluid (viscosity μ)
under a constant torque T0. The reference positions of the
axes are separated by a distance jdj ¼ d ≫ L along the x
direction (see Fig. 1). We rescale lengths, forces, and time
such that L ¼ 2, μ ¼ 1, and T0 ¼ 1 in dimensionless terms.
On the microscopic scale of bacteria, the Reynolds numbers
are very small so we operate within the framework of Stokes
flow, where the relationship between the dynamics (forces
Fj and torques Tj) and kinematics (linear and angular
velocities Uj and Ωj) of rigid bodies is linear. For two
flagellar filaments with phase angles ϕ1 and ϕ2, this means

�
F1

T1

�
¼Sðd;ϕ1;ϕ2Þ

�
U1

Ω1

�
þCðd;ϕ1;ϕ2Þ

�
U2

Ω2

�
; ð1Þ

where the resistance matrices S and C provide the self-
induced dynamics and the cross interactions between
filaments. In previous work [42], we demonstrate that
Sðd;ϕ1;ϕ2Þ ¼ S0ðϕ1Þ þOðd−2Þ when d ≫ L ¼ 2, where
S0ðϕÞ is the resistance matrix for a filament in an infinite
fluid, and is obtained by rotating S0ð0Þ ¼ ðA;B;BT;DÞ
through an angle ϕ about the vertical axis. Meanwhile
Cðd;ϕ1;ϕ2Þ ¼ d−1C1ðex;ϕ1;ϕ2Þ þOðd−2Þ and the first-
order correction comes from the leading-order expansion
of the Oseen tensor, C1ðex;ϕ1;ϕ2Þ ¼ −S0ðϕ1ÞðIþ exexÞ ·
S0ðϕ2Þ=ð8πμÞ.
To model the elastic link between the flagellar filament

and the rotary motor via the flexible hook, as well as the
elastic compliance of the semi-rigid filaments, we allow the

axis of each filament to move along x while a linear elastic
force (dimensionless strength k) restores it to a reference
position (see Fig. 1). The kinematics of helix j is therefore
described by two degrees of freedom: lateral displacement,
xj, and phase, ϕj. Projecting Eq. (1) onto the four degrees
of freedom in our model, we obtain the reduced system up
to Oðd−1Þ,
�−kx1

T0

�
¼ S̃0ðϕ1Þ

�
_x1
_ϕ1

�
þd−1C̃1ðex;ϕ1;ϕ2Þ

�
_x2
_ϕ2

�
; ð2Þ

where tildes denote the appropriate subset of rows and
columns from the matrices S0 and C1.
We next exploit the separation of timescales that

occurs at large interfilament distance between fast rotation
and slow synchronization. We introduce a slow variable
τ ¼ d−1t alongside the fast variable t for rotation. The

solution is then formally expanded as ϕjðtÞ ¼ ϕð0Þ
j ðt; τÞ þ

d−1ϕð1Þ
j ðt; τÞ þOðd−2Þ with time derivative _ϕjðtÞ ¼

ϕð0Þ
j;t þ d−1ðϕð0Þ

j;τ þ ϕð1Þ
j;t Þ þOðd−2Þ, where subscripts t and τ

denote partial derivatives; a similar multiple scale expan-
sion applies to lateral displacements, xj. Following the
method of multiple scales [43], we solve Eq. (2) at zero
and first order in d−1. At each order in d−1 we further
expand the solution in powers of a nested parameter
ðπNÞ−1 ≪ 1, with N being the number of helical turns
(for a typical bacterial flagellar filament ðπNÞ−1 ≈ 0.1).
This allows us to integrate the equations at each order
analytically (full calculations available in Supplemental
Material [41]).
At leading order in d−1,the solution of Eq. (2) is that each

filament rotates with fixed angular velocity Ω0 ¼ T0D−1
33 as

ϕð0Þ
j ðt; τÞ ¼ ϕ̂jðτÞ þ Ω0t, where ϕ̂jðτÞ is a constant of

integration. Meanwhile, each filament axis oscillates as

xð0Þj ðt; τÞ ≈ ρðKÞ cos½ϕð0Þ
j − ξðKÞ� with amplitude ρðKÞ ¼

B23A−1
0 ðK2 þ 1Þ−1=2 and phase lag ξðKÞ ¼ tan−1ð−KÞ ∈

ðπ=2; πÞ behind ϕð0Þ
j , where Aij; Bij; Dij are the compo-

nents of S0ð0Þ and A0 ¼ ðA11 þ A22Þ=2. The dimensionless
parameter K ¼ ðT−1

0 D33Þ=ðk−1A0Þ≡ trot=telast encapsu-
lates the dynamics of actuation (elastic compliance and
driving torque) and represents the ratio between the rotation
timescale and the elastic relaxation timescale of the
flagellum.
At first order in d−1, Eq. (2) can be reduced to a system

for ϕð0Þ
1 and xð1Þ1 only, by substituing the leading-order

solution for xð0Þj and applying the solvability condition

that the first-order correction ϕð1Þ
1 remains bounded for

large t. After some algebra, we deduce the slow evolution

of the phase difference, Δϕ ¼ ϕð0Þ
2 − ϕð0Þ

1 , to be Δϕτ ¼
−kB23ðA0D33Þ−1ðxð1Þ1 sinϕð0Þ

1 − xð1Þ2 sinϕð0Þ
2 Þ, where the

FIG. 1. Reduced model of interacting bacterial flagella. Two
parallel helical filaments have phase angles ϕj. A constant torque,
T0ez, rotates each filament about its axis, while an elastic
restoring force, −kxjex, pulls the axis back to a reference
position. The tethering points are separated along x by a distance
much greater than the length of the filaments, d ≫ L.
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first-order perturbation to sideways displacements has

the general solution xð1Þ1 ðt; τÞ ¼ γ sinðϕð0Þ
1 Þ þ δ cosðϕð0Þ

1 Þ þ
ζ sinðϕð0Þ

2 Þ þ η cosðϕð0Þ
2 Þ once the initial transients have

decayed exponentially.
By averaging the evolution equation for Δϕ over the

fast timescale, we exactly recover the classical Adler
equation [44] for the mean phase difference hΔϕiτ ¼
−kB23ðA0D33Þ−1η sinðΔϕÞ≡ −τ−1sync sinðΔϕÞ. This leads
generically to in-phase synchronization as hΔϕi¼
2tan−1½tanðΔϕ0=2Þexpð−τ=τsyncÞ� [Fig. 2(a)]. Importantly,

by identifying the coefficient η in the solution for xð1Þ1 ,
we can predict the timescale for synchronization tsync ¼
dτsync ¼ 2πμdD2

33ðB2
23T0Þ−1ðK2 þ 1Þ2K−3, which depends

explicitly on the actuation dynamics through K and on
the helical shape through the individual viscous resistance
coefficients A0, B23, and D33. Notably, tsync ∝ ðK2 þ
1Þ2K−3 is minimized at an optimum value, K� ¼ ffiffiffi

3
p

,
independent of distance.
To validate our multiple-scale approach, we compute the

instantaneous hydrodynamic forces on the two filaments

using Johnson’s slender-body theory (SBT) [45] and then
time step using Runge-Kutta RK4. We include the full
hydrodynamic interactions between the filaments by solv-
ing the integral equation 8πμu1ðsÞ¼L½f1ðsÞ�þK½f1ðs0Þ�þ
J ½f2ðs0Þ;d�, where uj and fj are the velocity and force
density along filament j, L, and K represent local and
nonlocal effects on the same filament, and the integral
operator J contains the Stokeslet and source dipole flows
generated by the other filament [46]. The integral equation
is solved numerically using a Galerkin method with
Legendre polynomials [42]. Further details of the computa-
tional method are available in the Supplemental Material
[41]. The final expression for tsync, with A0, B23, and D33

evaluated either analytically via resistive-force theory
(RFT) [47–49] or computationally via SBT [45], is com-
pared against full numerical simulations in Fig. 2. Our
multiple-scale theory with SBT coefficients is in perfect
agreement with simulations, while RFT captures all quali-
tative features of synchronization.
Our model of interacting bacterial flagella was coarse-

grained using multiple scales and shown to reduce to the
Adler equation, leading to in-phase locking. What is the
physical mechanism responsible for this flagellar synchro-
nization, and why is synchronization fastest at intermediate
values of elastic compliance?
To convey physical intuition, we focus on the details of

hydrodynamic forces and allow the filaments to move in a
2D elastic trap (the 1D=2D trap were confirmed to be
qualitatively identical via numerical simulations). Since
both rotation and lateral displacement occur in the plane
perpendicular to the filament axis, it suffices to consider the
flows and forces acting on the horizontal projection of the
helical centreline. When projected, each helical flagellar
filament maps onto a circle. If the helix has a noninteger
number of turns, we have a surplus of filament on one side
of the circle, so the filament generically reduces to the arc
of a circle, or a “horseshoe” (Fig. 3).
We first describe, in Figs. 3(a)–3(d), the intrinsic

dynamics of an elastically tethered and rotating horseshoe
in the absence of hydrodynamic interactions. A rotating
horseshoe with phase angle ϕ defined as in Fig. 3(a)
experiences a net viscous drag in the negative eϕðϕÞ
direction due to a one-sided surplus in force [Fig. 3(a)].
For weak elastic stiffness [k ≪ 1, Fig. 3(b)], this viscous
drag due to rotation is balanced out primarily by the viscous
drag due to translation, and thus we have _x ∝ −eϕðϕÞ. In
contrast, for strong elastic stiffness [k ≫ 1, Fig. 3(c)], the
viscous drag from rotation is balanced primarily by the
elastic restoring force, and therefore we have x ∝ −eϕðϕÞ.
In the intermediate regime [k ¼ Oð1Þ, Fig. 3(d)], the center
of the projected filament oscillates on circular orbits
lagging behind the phase ϕ by an angle between π=2
and π. Importantly, the force exerted by the filament on the
fluid, F ¼ −kx ¼ αerðϕÞ þ βeϕðϕÞ, always has a positive
er component.

(a)

(b) (c)

FIG. 2. Interacting bacterial flagella generically synchronize in-
phase via an elastohydrodynamic mechanism. (a) Evolution of
phase difference on the slow time scale of synchronization and
(inset) on the fast time scale of rotation, for inter-filament
distance d ¼ 2L. The timescale for synchronization is (b) propor-
tional to the hydrodynamic coupling between the filaments and
(c) minimized at intermediate elastic compliance. Data points
circled in blue represent identical input parameters (pitch angle
ψ ¼ 0.446 and filament thickness ϵ ¼ 0.0038 correspond to a
“normal” flagellar filament [29]; full list of parameters available
in the Supplemental Material [41]).
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To reveal the evolution of the phase difference for
interacting helices, we consider in Figs. 3(e)–3(g) how
horseshoe i responds to the flows induced by horseshoe
j ≠ i. If the external flow created by filament j near
filament i is parallel to erðϕiÞ, then the hydrodynamic
forces are balanced by symmetry and the external flow does
not lead to additional rotation [Fig. 3(e)]. If, however, the
flow induced by filament j has a positive eϕðϕiÞ

component, then filament i experiences a hydrodynamic
torque and speeds up [Fig. 3(f)]. In the far field, the flow
induced by filament j at the position of filament i is a
uniform flow Fj · ðIþ exexÞ=8πμd (the leading order
expansion of a Stokeslet flow). The eϕðϕjÞ component
of Fj leads to a symmetric term βeϕðϕiÞ · ðIþ exexÞ ·
eϕðϕjÞ on both filaments that does not modify the phase
difference. In contrast, the flow induced by the positive
erðϕjÞ component of Fj does lead to synchronization: as
sketched in Fig. 3(g), these flow components have the
effect of slowing down the filament that is ahead and
speeding up the one that is behind. This elastohydrody-
namic balance is the physical mechanism responsible for
the synchronization of bacterial filaments.
The phase dynamics illustrated theoretically and

numerically in Figs. 2(b)–2(c) are fully explained by the
physical mechanism outlined above: (i) the rate of syn-
chronization decays linearly with d, a signature of Stokeslet
flows, and (ii) the rate of synchronization is proportional to
the radial component of the force, α ¼ Fj · erðϕjÞ, which is
largest for intermediate values of k since α ≪ 1when either
k ≪ 1 or k ≫ 1, because Fj ≈ 0 or Fj ∝ eϕðϕjÞ, respec-
tively, [Fig. 3(d)].
Previous biophysical models of ciliary synchronization

assumed K ¼ trot=telast to be very large [23,27,37]. While
this is suitable for eukaryotic flagella, the dynamical
properties of bacterial flagella are qualitatively different.
Crucially, the bacterial flagellum has two components with
bending stiffness separated by four orders of magnitude:
EIhook≈1.6×10−4 pNμm2 [40] and EIfilament≈3.5 pNμm2

[50]. On dimensional grounds, we have k ∼ EI=h3, where
EI and h are the bending stiffness and length of the
deforming component (hook or filament). We estimate that
Khook ≈ 0.05, which is significantly below the optimum
K� ¼ ffiffiffi

3
p

and gives tsync=topt ¼ Oð103Þ due to the rapid
increase of tsync ∼ K−3 for small K. However, the finite size
of the hook (h ¼ 59 nm [40]) likely requires that the
proximal end of the flagellar filament deforms as well.
For a length scale of deformation around h ¼ 0.1–1 μm,
we estimate that Kfilament ¼ 0.2–200, a range which strad-
dles the optimum. Surprisingly, this suggests that the
comparatively smaller elastic compliance of the semirigid
flagellar filament [50], together with the short length [51]
and the dynamic stiffening of the flagellar hook [52] could
play a crucial role in the synchronization and stability of
bacterial flagellar bundles.
The physical mechanism revealed by our reduced model

of the bacterial flagellum is distinct from previously
proposed eukaryotic mechanisms based on orbital com-
pliance [23] and phase-dependent forcing [26]. It is similar
to the axial-compliance mechanism in Ref. [37], but the
resulting dynamics of synchronization are qualitatively
different due to the specific hydrodynamic resistance of
the helical filament. Since the helical amplitude of a

(a) (b)

(c) (d)

(e)

(g)

(f)

FIG. 3. Physical mechanism for elastohydrodynamic synchro-
nization. (a) The viscous drag on a rotating helix with phase angle
ϕ is balanced out primarily by (b) the viscous drag due to
translation (k ≪ 1) or (c) by the elastic restoring force (k ≫ 1).
(d) For general values of k, the axis of the helix, x, lags behind the
phase angle ϕ by an angle between π=2 and π. (e),(f) Filament i
speeds up only if the flow induced by filament j ≠ i has a positive
eϕðϕiÞ component. (g) Hydrodynamically coupled helices syn-
chronize in phase due to the flows that each filament j produces
along the positive erðϕjÞ direction and the resulting hydro-
dynamic stresses on filament i ≠ j.
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bacterial flagellar filament is much smaller than its length,
its resistance to rotation, D33, is much smaller than its
resistance to translation, A0. This leads to intrinsic kin-
ematics of an individual filament [Figs. 3(b)–3(d)] that
cannot be captured by spherical-bead models.
One limitation of our analytical theory is that each

filament moves with only two degrees of freedom.
Computations for filaments with all six degrees of freedom
[41] reveal that the physical mechanism for synchroniza-
tion is robust against deviations in the axes of the filaments,
and that our result for tsync can be modified to take into
account a finite angle of inclination between the two
filaments (as observed during flagellar bundling).
Crucially, the optimum elastic compliance for synchroni-
zation is not affected by the inclination.
Another constraint that can be relaxed, even analyti-

cally, is the assumption that the filaments are identical
[41]. The Adler equation can be modified to include a
small mismatch, ΔΩ0, in the intrinsic rotation rates of the
two filaments, giving hΔϕiτ ¼ ΔΩ0 − τ−1sync sinðΔϕÞ. The
filaments then phase lock to Δϕ∞ ¼ sin−1 ðΔΩ0τsyncÞ, up
to a critical point where the mismatch cannot be com-
pensated by hydrodynamic interactions. This prediction
agrees with numerical simulations for two filaments with
either mismatched driving torques or different filament
geometries.
To make analytical progress, it is often necessary to

assume that hydrodynamically coupled bodies are far apart
[5,23,25,37]. Despite such constraints, far-field theories are
crucial for understanding the underlying principles of
synchronization. Here, the theory allowed us to provide
a detailed physical mechanism based on an elastohydrody-
namic balance at the level of individual filaments, which
remains valid beyond the far-field limit [41]. The current
theory and simulations highlight the essential role played
by the elasticity of both the hook and the flagellar filament
in the synchronization of bacterial flagella. Numerical
simulations beyond the far-field limit [41] suggest that
the far-field optimum value of K could distinguish between
different near-field trends for tsync. In turn, this could guide
future studies into the synchronization of bacterial flagella
separated by distances smaller than the filament length,
e.g., during flagellar bundling. Our results will enable a
comparative analysis of synchronization for the different
polymorphic shapes of bacterial flagellar filaments [39],
while our methodology can also be used to investigate the
impact of the torque-speed relationship of the rotary motor
on synchronization [38]. Finally, the noisy Adler equation
has been proposed to model the fluctuating dynamics of
beating filaments [18,53], so adding noise to the system
studied here could enable a better understanding of flagellar
unbundling [29].
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