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A bar-joint mechanism is a deformable assembly of freely rotating joints connected by stiff bars. Here we
develop a formalism to study the equilibration of common bar-joint mechanisms with a thermal bath. When
the constraints in a mechanism cease to be linearly independent, singularities can appear in its shape space,
which is the part of its configuration space after discarding rigid motions. We show that the free-energy
landscape of a mechanism at low temperatures is dominated by the neighborhoods of points that correspond
to these singularities. We consider two example mechanisms with shape-space singularities and find that they
are more likely to be found in configurations near the singularities than others. These findings are expected to
help improve the design of nanomechanisms for various applications.
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Introduction.—Bar-joint mechanisms constitute one of
the simplest, widely employed models to understand a
variety of mechanical structures ranging from viruses [1],
colloidal clusters [2–5], crystals [6], and minerals [7], and
robots and machines [8,9]. More recently, DNA origami
has made the direct fabrication of miniaturized mecha-
nisms possible at the nanoscale, where thermal fluctua-
tions due to the surrounding medium cannot be neglected
[10,11]. More generic examples of thermally driven
mechanisms include ordered and disordered lattices
[12–14], polymerized membranes [15,16], and polyhedral
nets [17–19]. There is, therefore, an arising need to
understand how thermal excitations affect the physical
properties of these mechanisms, but only some attempts
have been made so far [3,20].
The effect of thermal fluctuations on a physical system is

often represented by its free-energy landscape in terms of
collective variables that provide a coarse-grained description
of its slowest dynamics. In theory [21,22], one can obtain the
free energy of a mechanism by integrating out the fast modes
that are transverse to its shape space, i.e., the subset of its
configuration space once rigid-body motions are removed.
Doing this, however, becomes nontrivial when the mecha-
nism has shape-space singularities [9,23,24]. For concrete-
ness, consider the shape space of the planar four-bar linkage
with freely rotating joints [25–27] (Fig. 1). Though this
linkage has one degree of freedom up to Euclidean motions,
it has two modes of deformation, one where the angle
θ1 ¼ θ2 and another where θ1 ≠ θ2, meeting at two isolated
singular points ðθ1; θ2Þ ¼ ð0; 0Þ and ðπ; πÞ. One generically
expects the mechanism to be soft at these singularities, and
indeed the free energy diverges in a harmonic approximation
of the elastic energy [20]. These divergences must be cut off
by higher-order nonlinear effects, yet how this happens and
to what extent remains to be understood.

In this Letter, we develop a formalism to understand
the thermal equilibration of common bar-joint mechanisms
that have isolated shape-space singularities. We show
that the divergent contributions to the free energy arising
in the harmonic approximation to the energy are suppressed
by anharmonic corrections. These findings show the exist-
ence of energetic free-energy barriers between configura-
tions near the singularities and configurations farther from
the singularities. Our results are consistent with a closely
related work [3,4] on singular colloidal clusters, but allow for
isolated singularities of the shape space. We demonstrate our
results using both the four-bar linkage as well as a flat,
triangulated origami [28]. Our analysis has direct conse-
quences in the design and employment of nanoscale mech-
anisms in applications ranging from self-assembly [29] to
drug delivery [30], where relative thermodynamic stability of
different configurations is of paramount importance.
Mechanisms and singularities.—We consider bar-joint

mechanisms made of N ≥ 3 pointlike joints in d dimensions

FIG. 1. Shape space of the planar four-bar linkage visualized
as two intersecting curves on a torus, each curve representing a
“branch” of the shape space. The poloidal and toroidal angles
along the branches correspond to the angles θ1 and θ2 of the
linkage, which has two modes of deformation with θ1 ¼ θ2
(blue curve) and θ1 ≠ θ2 (red curve).
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connected bym < Nd − 1
2
dðdþ 1Þ freely rotating, massless

bars. If the joints have position vectors r1; r2;…; rN ∈ Rd in
the lab frame, the mechanism’s configuration can be fully
described at any given moment using a configuration vector
r ∈ RNd defined by r ¼ ðr1; r2;…; rNÞ. We assume the bars
in the mechanism to be stiff but compressible with an energy
that depends on the bar lengths so that the total energy of the
mechanism is UðrÞ ¼ P

m
i¼1 ϕi½liðrÞ�. Here liðrÞ is the

length of the ith bar with an energy ϕiðliÞ, which is assumed
to have a minimum value of zero at li ¼ l̄i, the natural
length of the ith bar.
With the above form of the energy, all nontrivial

ground states of a mechanism belong to its shape space
Σ [31–33], which is the set of all deformed configurations
of the mechanism with the length of each bar equal to its
natural length, once rotations and translations are
removed. To practically identify Σ, we first switch to a
Cartesian body frame attached to the mechanism so
that all 1

2
dðdþ 1Þ rigid motions are eliminated [22,34].

We require n ¼ Nd − 1
2
dðdþ 1Þ coordinates to specify

the state of the mechanism in the body frame and let
q ∈ Rn be its configuration vector in this frame. Now
consider m holonomic constraint functions fi∶Rn → R,
i ¼ 1; 2;…; m, each associated with a single bar, and
defined by fiðqÞ ¼ ½l2

i ðqÞ − l̄2
i �=ð2l̄iÞ. The m scalar

constraint functions can also be considered together as
a single constraint map f∶Rn → Rm defined by fðqÞ ¼
½f1ðqÞ; f2ðqÞ;…; fmðqÞ�. Then, the shape space is the zero
level set Σ ¼ fq ∈ Rn∶fðqÞ ¼ 0g. In the absence of
external forces, each point in Σ is a ground-state con-
figuration of the mechanism with a distinct shape.
The compatibility matrix CðqÞ [35,36] at a configuration

q ∈ Σ is them × n Jacobian matrix∇f of the constraint map
f. If C has full rank for all points in Σ, then Σ is an (n −m)-
dimensional submanifold of Rn [37,38]. When Σ has a
“branched” structure, e.g., like in Fig. 1, CðqÞ drops rank
at the singularity where the branches meet [39,40], and
the constraints cease to be linearly independent. Such
singularities are the most common singularities [39,41]
found in a mechanism and here we consider the situation
where they occur only at isolated points of Σ. (For other, less
common singularities that can occur in a mechanism, see
Refs. [39,40,42], and references therein.) The branches of Σ,
being (n −m)-dimensional submanifolds of Rn, can be
individually parametrized using a set of coordinates
ξ ∈ Rn−m, called shape coordinates [43] as they capture
the shape changes of the mechanism as it moves on Σ. We
also assume that n is small enough that such parametriza-
tions can be found without much difficulty and that the
branches are linearly independent at the singularity [39].
Zero-energy shape changes constitute the slowest dynamics
in a mechanism, so it follows that the shape coordinates ξ are
the most natural collective variables (CVs) for a low-
dimensional description of a thermally excited mechanism.

Thermal fluctuations.—Let us assume that the value of the
chosen CV for any configuration q ∈ Rn of the mechanism
can be measured using the CV map ξ̂ðqÞ. [In the case of the
four-bar linkage, for example, if we choose θ1 as the CV, then
ξ̂ðqÞ is the map that computes θ1 for any q, whether or not it
lies on the branches of the linkage’s shape space.] The free
energy associated with the CV ξ is [44]

Aξ̂ðξÞ ¼ −β−1 lnP ξ̂ðξÞ; ð1Þ
where β is the inverse temperature and P ξ̂ðξÞ is the marginal
probability density of the CV, which, aside from factors of
normalization, is

P ξ̂ðξÞ ¼
Z
Rn

dqIðqÞδ½ξ̂ðqÞ − ξ� exp½−βUðqÞ�: ð2Þ

Here δ½·� is the (n −m)-dimensional Dirac delta function,
which restricts the domain of integration to the m-
dimensional CV level set ξ̂−1ðξÞ ¼ fq ∈ Rn∶ξ̂ðqÞ ¼ ξg
[45], and IðqÞ is a Jacobian factor introduced by the change
of coordinates from the lab frame to the body frame. When ξ̂
has full rank in ξ̂−1ðξÞ, the coarea formula [44] lets us express
P ξ̂ðξÞ as an exact high-dimensional surface integral over

ξ̂−1ðξÞ, but evaluating it is a difficult task in practice. Hence,
we resort to asymptotic methods for its evaluation.
At low temperatures (i.e., large β) we can asymptotically

evaluate the integral in Eq. (2) by expanding the energyUðqÞ
around the ground-state configurations in ξ̂−1ðξÞ. Since all
ground states belong to the shape space Σ, they could be
regular (i.e., nonsingular) points or singularities of Σ. We call
ξ a regular value of the CV if ξ̂−1ðξÞ does not contain
singularities of Σ and vice versa. For now, let us assume that
ξ is a regular value of the CV and that ξ̂−1ðξÞ contains just
one ground state q̄. If q is a point near q̄, after setting
q → q̄þ q, we expand the energy to the lowest order around
q̄ and find the harmonic energy U ≈ 1

2
qTCTKCq ¼ 1

2
qTDq.

HereD ¼ CTKC is the dynamical matrix evaluated at q̄ [36]
(assuming joints of unit mass) and K is the diagonal matrix
of bar stiffnesses ϕ00

i ðl̄iÞ, which we set equal to κ for all bars
for simplicity. See the Supplemental Material [46] for details.
Since q̄ is a regular point of Σ, C has full rank, and D has
n −m independent zero modes that belong to kerC ¼
fu ∈ Rn∶Cu ¼ 0g [36]. These zero modes are all tangent
to Σ and represent a degree of freedom [37]. Hence, to
asymptotically evaluate Eq. (2) in the neighborhood of a
regular point, we can safely use the harmonic approximation
since any divergence [20,63,64] due to these zero modes is
regularized by the delta function, which suppresses all
contributions to the integral that are tangent to Σ [65].
Then, the asymptotic marginal density for a regular value ξ
of the CV is (Supplemental Material [46])

P ξ̂ðξÞ ∼ IðξÞ
�
2π

β

�
m=2

���� det½∇ψðξÞ�T∇ψðξÞ
detD⊥ðξÞ

����
1=2

: ð3Þ
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Here ψ∶Rn−m → Rn is a parameterization of Σ near q̄ ∈ Σ
in terms of the CV ξ, and compatible with the CV map, such
that q̄ ¼ ψðξÞ and ξ̂ðq̄Þ ¼ ξ. Also, detð∇ψÞT∇ψ is the
determinant of the induced metric on Σ and D⊥ is the
diagonal matrix of the m nonzero eigenvalues of D at q̄.
Now, consider the situation at a shape-space singularity,

where C has rank deficiency. At such a point, using the
Maxwell-Calladine count [66,67], we find that the number
of zero modes increases to n −mþ s, where s is the
number of independent self stresses σ ∈ kerCT—each self
stress being a set of bar tensions that leave the mechanism
in equilibrium [36]. The zero modes at a singularity are
not all tangent to Σ, which means that the delta function in
Eq. (2) fails to suppress the divergences due to these zero
modes when the harmonic approximation is used.
Furthermore, as one approaches the singularity along Σ,
the lowest s nonzero eigenvalues of the dynamical matrix
D become small leading to an effective softening of the
mechanism. This causes Eq. (3) to break down even for
regular ground states in the vicinity of the singularity. For
instance, for the four-bar linkage, using Eq. (3) we find
Pθ̂1

ðθ1Þ ∼ j sin θ1j−1 (Supplemental Material [46]), which
diverges as θ1 → 0;�π.
To resolve the problem, we need to consider higher-order

contributions to the energy due to the excess zero modes at
the singularity. Consider a singularity q̄� ∈ Σ, where the CV
has the value ξ�. For now, let us also assume that the only
ground state in the CV level set ξ̂−1ðξ�Þ is q̄�. For a point q
close to q̄� ∈ Σ, we set q → q̄� þ q and write q ¼ uþ v.
Here u ∈ kerC is a zero mode, v ∈ ðkerCÞ⊥ is a fast
vibrational mode of the system, and ðkerCÞ⊥ is the
orthogonal complement of kerC in Rn. Expanding the
energy to the lowest order in u and v around q̄� [3,12,13]
we find (Supplemental Material [46])

U ≈
1

2
½Cvþ wðuÞ�TK½Cvþ wðuÞ�: ð4Þ

Here wðuÞ ∈ Rm is a vector such that its ith component is
1
2
uT∇∇fiu, with ∇∇fi being the Hessian matrix of the ith

constraint function fi, evaluated at q̄�. This makes the above
energy expansion quartic in the zero modes u.
Equation (4) is only valid when the expansion is around

the singularity q̄�, and a similar expansion does not exist for
ground states in ξ̂−1ðξÞ for ξ close to ξ�, where the harmonic
approximation is not applicable either. Thus, for ξ → ξ�, we
choose to find P ξ̂ðξÞ by directly evaluating the integral over

ξ̂−1ðξÞ using the coarea formula. To simplify the evaluation,
we make two assumptions: (i) for points close to q̄�, the CV
map ξ̂ can be approximated by its Taylor expansion around
q̄�: ξ̂ ¼ ξ� þ ð∇ξ̂ÞqþOðkqk2Þ, with∇ξ̂ being the Jacobian
matrix of ξ̂ at q̄�; (ii) fast modes that belong to ðkerCÞ⊥ do
not change the value of the CV to linear order at q̄�, i.e.,
ð∇ξ̂Þv ¼ 0. Assumption (i) linearizes the CV map and

turns its level sets near the singularity into hyperplanes,
simplifying the evaluation of Eq. (2). Although assumption
(ii) is stringent on the shape coordinate we use as the CV, it is
true for most reasonable choices and a good CV should
mainly be sensitive to the slow modes [68]. This makes it
possible to use the quartic energy expansion and integrate
over the fast modes. Note that in the above steps, we do not
make use of any parametrization of Σ, unlike in Eq. (3).
Using the linearized CV map and the quartic expansion

for the energy [Eq. (4)] in Eq. (2), we integrate out the fast
vibrational modes v to find (Supplemental Material [46])

P ξ̂ðξÞ∼
Iðξ�Þ

jdetD⊥det∇ξ̂ð∇ξ̂ÞTj1=2
�
2π

β

�ðm−sÞ=2

×
Z
Ξξ

dΩðuÞexp
�
−
1

2
βκ
X
σ

½σ ·wðuÞ�2
�
; ξ→ ξ�;

ð5Þ

where σ ∈ kerCT are the self stresses andD⊥ is the diagonal
matrix of the m − s nonzero eigenvalues of D at q̄�. Also,
dΩðuÞ is the area element on the integration domain Ξξ,
which is geometrically an s-dimensional hyperplane formed
by the intersection of kerC and the level set of the linearized
CV map ð∇ξ̂Þ−1ðξ − ξ�Þ ¼ fu ∈ Rn∶ξ� þ ð∇ξ̂Þu ¼ ξg. On
choosing a basis for kerC, the term in the exponential of the
above integral becomes a quartic polynomial, making further
simplification difficult. We discuss the convergence criteria
for Eq. (5) in the Supplemental Material [46].
On the basis of how P ξ̂ðξÞ in Eqs. (3) and (5) scales with

β, we can show that the free-energy barriers between regular
and singular values of the CV have a temperature and
stiffness dependence ∼ ln βκ, making the barriers energetic
in nature. This is not surprising considering the overall
softening of the mechanism near the singularities. Also, for
both the quartic and harmonic approximations for P ξ̂ðξÞ, we
expect the range of validity (in ξ) to increase with increasing
β, along with an increase in the range where both approx-
imations produce similar results.
So far we have only considered cases where the CV level

set ξ̂−1ðξÞ contains only one regular point or a singularity ofΣ.
However, as Σ has a branched structure, ξ need not identify a
configuration in Σ uniquely. Indeed, for the four-bar linkage,
we see that there are as many as two configurations with a
given value of θ1 (Fig. 1). Nonetheless, it is easy to find the
asymptotic marginal density for more general cases by using
combinations of Eqs. (3) and (5) to add the contribution of
each ground state in ξ̂−1ðξÞ individually, noting that Eq. (5)
gives the collective contribution fromall thebranchesmeeting
at a singularity.
Examples and discussion.—We now use our formalism to

find the free-energy profiles of two example mechanisms
with one-dimensional shape spaces with isolated singular-
ities and compare them with results from Monte Carlo
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simulations. (Also see the Supplemental Material [46] for an
example mechanism with a two-dimensional shape space
and a mechanism with a permanent state of self stress, which
is unlike the case where it appears only at isolated singu-
larities.) Motivated by typical DNA origami structures
that have lengths in the range of a few hundred nanometers
with stiffness in the range 0.1–1 pN=nm [11], we choose
a nondimensional inverse temperature of β ¼ 104 and use a
potential of the form ϕiðliÞ ¼ ðl2

i − l̄2
i Þ2=ð8l̄2

i Þ so that
ϕ00
i ðl̄iÞ ¼ κ ¼ 1. Further details on the simulations are given

in the Supplemental Material [46].
The four-bar linkage we consider (Fig. 1) is made out of

two sets of bars of lengths a and λa, where λ > 0 is a
dimensionless aspect ratio. For λ ≠ 1, the linkage has
shape-space singularities at θ1 ¼ 0 and θ1 ¼ �π where
the bars become collinear and support a state of self stress.
[For simplicity, we do not discuss the square four-bar
linkage with λ ¼ 1 in this Letter as it has additional
singularities at ðθ1; θ2Þ ¼ ð0;�πÞ [69] ]. The shape space
can be fully parameterized using the angle θ1, which we
use as our CV and choose θ1 ¼ 0 as the point of zero free
energy. For θ1 far from the singular values we use Eq. (3)
to find the free-energy difference ΔAθ̂1

ðθ1Þ ¼ Aθ̂1
ðθ1Þ −

Aθ̂1
ð0Þ as (Supplemental Material [46])

ΔAθ̂1
ðθ1Þ∼β−1 ln ½X1=2D−1=2ð0Þjsinθ1j�; 0≪ jθ1j≪ π;

ð6Þ
where D−1=2ð·Þ is the parabolic cylinder function [70] and
X ¼ ffiffiffiffiffi

βκ
p

λa=ð8jλ − 1jÞ is a dimensionless term that is
independent of θ1. As expected, Eq. (6) diverges when θ1
is close to the singular values θ1 ¼ 0 or θ1 ¼ �π. For
θ1 → 0, using Eq. (5), the free-energy difference takes the
form (Supplemental Material [46])

ΔAθ̂1
ðθ1Þ∼β−1

�
X2θ41− ln

�
D−1=2ð−2Xθ21Þ

D−1=2ð0Þ
	�

; θ1 → 0:

ð7Þ

A similar expression is derived in the Supplemental Material
[46] for θ → �π. A comparison between the numerical
results and asymptotic expressions in Eqs. (6) and (7)
(Fig. 2) shows excellent agreement for all values of θ1.
For further testing our methods, we consider an origami

made by triangulating a unit square [28] and embedded in
three dimensions [Fig. 3(a)]. To make the origami more
realistic, in simulations, we avoid all configurations that
result in face intersections. The one-dimensional shape space
[Fig. 3(b)] of this origami can be visualized as four
intersecting branches in the space of the fold angles, i.e.,
the supplement of the dihedral angle at a fold. The
intersection point is the singular flat state of the origami,
where all the fold angles are zero. After numerically para-
metrizing the branches of the shape space in terms of the fold

angle ρ1, which we use as our CV, we utilize Eq. (3) to find
the free energy Aρ̂1ðρ1Þ for jρ1j ≫ 0. We next find Aρ̂1ðρ1Þ
as ρ1 → 0 using Eq. (5) and choose ρ1 ¼ 0 as the point of
zero free energy. A comparison between the numerical and
the asymptotic results for the free-energy difference
ΔAρ̂1ðρ1Þ shows good agreement in both regimes of ρ1
[Fig. 3(c)]. Self-avoidance of the faces forces us to consider
only a part of each branch of the shape space for our analysis.
Since the extent of these parts (in ρ1) vary for the four
branches [Fig. 3(b)], it results in discontinuous jumps in the
free-energy curves.
The free-energy landscapes of the four-bar linkage and

the triangulated origami [Figs. 2 and 3(c)] demonstrate
that the measured values of the CV tend to be closer to
their values near the singularities. Yet, as free-energy
landscapes (and even their extrema) do not always have a
CV-agnostic interpretation [71–73], to draw conclusions
we should also consider the physical meaning of the
chosen CV. The CVs we picked for both the example
mechanisms were internal angles whose values dictate the
overall shape of the mechanism. Specifically, according to
our results, we expect the bars of the four-bar linkage to
tend to be collinear, as measured by the angle θ1 being
close to 0 or π. Similarly, the origami will tend towards
being flat, as measured by the fold angle ρ1. This tendency
increases at lower temperatures as the free-energy barriers
become larger. Finally, we remark on the apparent double-
well nature of the landscapes near singular values of the
CV. Because of the branched nature of the shape spaces,
when θ1 → 0;�π or when ρ1 → 0, there are multiple
ground states where the mechanism is also relatively soft.
This is illustrated by the widening of the sublevel sets of the
energy as one moves away from the singularity (e.g., see
Fig. S4 in the Supplemental Material [46]). The net result is
an increase in the number of thermodynamically favorable

FIG. 2. Free-energy difference ΔAθ̂1
ðθ1Þ of a four-bar linkage

with parameters a ¼ 1 and λ ¼ 2 in units of β−1 at β ¼ 104. The
inset shows the absolute errors between the numerical and
asymptotic results using the harmonic approximation [Eq. (6),
blue curve] and quartic approximation [Eq. (7), red curves].
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states with θ1 close to 0 or�π (and ρ1 close to 0), causing an
apparent lowering of the free energy.
Conclusion.—In this Letter we have described a formal-

ism to find the free-energy landscapes of common bar-joint
mechanisms with isolated singularities in their shape spaces.
Our results indicate that configurations in the neighborhood
of the singularities have relatively lower free energy com-
pared to configurations farther from the singularities. This
could help in programming the conformational dynamics of
nanomechanisms [74]. Our findings also highlight the
interplay between the geometry of a mechanism’s shape
space and its thermodynamic properties. Open questions
include the behavior of these mechanisms in the thermo-
dynamic limit [75,76], where configuration-space topology
is often known to play a role [77], their behavior in the
presence of active (nonthermal) noise [13], and methods to
bias their dynamics towards desired states [78], e.g., by
introducing CV-dependent bias potentials [79].
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