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We study the effect of spatial anisotropy on polar flocks by investigating active q-state clock models in
two dimensions. In contrast to the equilibrium case, we find that any amount of anisotropy is
asymptotically relevant, drastically altering the phenomenology from that of the rotationally invariant
case. All of the well-known physics of the Vicsek model, from giant density fluctuations to microphase
separation, is replaced by that of the active Ising model, with short-range correlations and complete phase
separation. These changes appear beyond a length scale that diverges in the q → ∞ limit, so that the
Vicsek-model phenomenology is observed in finite systems for weak enough anisotropy, i.e., sufficiently
high q. We provide a scaling argument which explains why anisotropy has such different effects in the
passive and active cases.
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Active matter, being made of energy-consuming units, is
well known to exhibit spectacular collective behaviors not
permitted in equilibrium. Experimental examples include
the defect dynamics of active nematics [1–3], low Reynolds
number turbulence [4,5], motility-induced phase separation
[6–8] and, perhaps most famously, flocking [9–13].
Although these phenomena appear in complex, usually
living, systems, most of our theoretical understanding
comes from studying collections of identical active units
evolving in pristine environments, often with periodic
boundary conditions. Recently acquired evidence suggests,
though, that active systems seem to be fundamentally
sensitive to quenched and population disorder [14–20],
and that even the nature of boundaries can influence bulk
properties [21].
The sensitivity of active systems to anisotropy, in the

form of fixed preferred directions in space, remains largely
unexplored. A basic result is available in the context of
polar flocks, i.e., collections of simple self-propelled
particles locally aligning their velocities. In two space
dimensions, comparing the Vicsek model (VM) [22] to the
active Ising model (AIM) [23] shows that the symmetry of
the order parameter controls the emerging physics. In the
VM, dynamics are rotation invariant, i.e., have continuous
symmetry, and the ordered phase exhibits scale-free density
and order fluctuations [24–28]. In the AIM, directed
motion happens only along two opposite directions, hence
the dynamics only has a discrete symmetry, and the
correlations are short ranged in the ordered phase.
Concomitantly, even though the transition to collective
motion is akin to a phase-separation scenario in both the

AIM and the VM, their coexistence phases are different
[29]: models in the Vicsek class exhibit microphase
separation, typically in the form of a smectic train of
traveling dense bands [30], whereas the AIM shows a
single moving domain and macrophase separation [31].
Anisotropy is generically expected in experimental

systems, due to weak external fields. The AIM, by
restricting directed motion along one dimension, corre-
sponds to an extreme spatial anisotropy, whose relevance
for realistic systems can be questioned. A natural question
is then whether polar flocks and the physics of the Vicsek
model are robust to weaker forms of anisotropy. In
equilibrium, the 2D XY model—which is the passive
counterpart of the VM—is in a sense both robust and
sensitive to the discreteness of spins: q-state clock models,
which break rotational invariance and interpolate between
the XY and the Ising models, exhibit a quasi-long-range
ordered phase similar to that of the XY model below the
BKT transition for q > 4, but this critical phase gives way
to a region of long-range order below some finite temper-
ature that vanishes only when q → ∞ [32–36]. Thus, from
the XY viewpoint, a new ordered phase emerges at any q,
but it is marginal, confined to T ¼ 0, in the q → ∞ limit.
In this Letter, we investigate the susceptibility of polar

flocks to weak anisotropy. Using a combination of numeri-
cal simulations and analytical arguments, we study q-state
active clock models and their hydrodynamic theories. We
uncover a scenario qualitatively different from the equi-
librium one: the phenomenology of the rotationally invari-
ant Vicsek model disappears for any amount of spin
anisotropy, leaving only AIM-like phenomenology with
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short-ranged correlations and macrophase separation.
This, however, happens only asymptotically: at fixed q,
one still observes the Vicsek physics up to a typical scale ξq
that diverges exponentially with q, which we estimate using
a mean-field theory and a scaling argument. The latter
traces back the fundamental difference with equilibrium to
the presence of long-range order in the isotropic active
system.
Active clock models.—Particles i ¼ 1;…; N carrying a

spin si ∈ f0; 1;…; q − 1g reside at the nodesR of a square
lattice without occupation constraints. They undergo biased
diffusion by jumping to neighboring sites with rate Dð1þ
εd · uiÞ with d the direction of the jump and ui ¼
ðcos θi; sin θiÞ the unit vector along the clock angle
θi ¼ 2πsi=q. Spins can rotate to the previous or next
“hour” θ0i ≡ θi � ð2π=qÞ at rate

wi;R ¼ w0 exp

�
β

2ρR
mR · ðu0

i − uiÞ
�
; ð1Þ

where ρR andmR ¼ P
j∈R uj are, respectively, the number

of particles and the magnetization at siteR hosting particle
i, u0

i is the new spin direction, and w0 is a constant [37]. For
q ¼ 2, one recovers the AIM used in Ref. [31]. As shown in
Ref. [38], in the isotropic q → ∞ limit, the spin dynamics
reduces to the Langevin equation

∂tθi ¼ Ω∞ þ
ffiffiffiffiffiffiffiffiffiffi
2D∞

p
ξi; ð2Þ

where ξi is a Gaussian white noise of unit variance and the
torque and rotational diffusivity are given by Ω∞ ¼
ð4w0π

2β=q2Þ½ðmR=ρRÞ · ð∂ui=∂θiÞ� þOðq−3Þ and D∞ ¼
ð4w0π

2=q2Þ þOðq−3Þ, respectively. In order to have a
well-behaved active XY model in the q → ∞ limit, one
must thus take w0 ∝ q2. In the following, we set w0 ¼
ðq2=4π2Þ to fix D∞ ¼ 1 and choose D ¼ 1 without loss of
generality. For simplicity, we also fix the activity parameter
ε ¼ 0.9 [42].

The only parameters left to vary, besides q, are thus the
temperature T¼1=β and the global density ρ0 ¼ N=ðLxLyÞ,
where Lx and Ly define a rectangular domain with periodic
boundary conditions. For numerical efficiency, we use
parallel updating, first performing on-site spin rotations,
then biased jumps.
The phase diagrams in the ðρ0; TÞ plane at fixed q all

resemble those of either the AIM or VM: the disordered gas
present at high T and/or low ρ0 is separated from the
low-T=high-ρ0 polar ordered liquid by a coexistence phase
[Fig. 1(a)]. The liquid and coexistence phases both have a
finite global magnetization m≡ jhmRiRj. However, at
fixed system size, they display AIM-like or VM-like
properties depending on q: For large q, one observes giant
number fluctuations in the polar liquid and microphase
separation, as for the Vicsek model [Figs. 1(c) and 1(d)]. In
contrast, at lower q values, the liquid has normal fluctua-
tions and the system phase separates into a single moving
domain [Figs. 1(b) and 1(d)]. The direction of global order
Φ≡ arghmRiR also behaves differently in the liquid phase,
exhibiting either AIM-like and VM-like behaviors, depend-
ing on the value of q: ΦðtÞ wanders slowly at large q,
whereas it is pinned along a clock angle at small q
[Fig. 1(e)]. The results presented in Fig. 1 seem to suggest
that active clock models have different behavior at q ¼ 4
and q ¼ 10, similar to the differences between the AIM and
the VM. In fact this is only true at finite size, as we now
show for both the liquid and phase-separated phases.
We first consider the behavior of correlation functions in

the liquid phase. In Fig. 2(a), we show the transverse
magnetization structure factor S⊥ðkÞ ¼ hm⊥ðkÞm⊥ð−kÞi
for wavelength k calculated in large systems for various q
values (the same behavior is observed for the structure
factor of the density field). For sufficiently small q, S⊥
converges to finite values as k → 0. This AIM-like behav-
ior only happens, though, beyond a crossover length scale
ξq. For scales smaller than ξq, the structure factor exhibits
algebraic scaling, as in the VM. The crossover scale ξq can

(a) (b)

(c)

(d) (e)

FIG. 1. (a) Typical phase diagram in the ðρ0; TÞ plane (q ¼ 4), Transition lines are defined by the coexisting densities at a given
temperature T ¼ 1=β, computed in systems of size 400 × 20). (b),(c) Snapshots of density field in the coexistence phase in a long
800 × 20 system suitable for the observation of many traveling bands [steady state, ρ0 ¼ 10, q ¼ 4 in (b), q ¼ 10 in (c)]. (d) Number
fluctuations hn2ic vs hni ¼ ρ0l2, the number of particles in a square box of linear size l calculated in the liquid phase of square
200 × 200 systems (ρ0 ¼ 10, β ¼ 3.5). “Giant” anomalous fluctuations are observed for q ¼ 10, but not for q ¼ 4. (e) Time series of
Φ≡ arghmkik, the orientation of the global polar order [parameters as in (d)].
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be extracted by fitting the structure factors to the Ornstein-
Zernicke function fðkÞ ¼ α=½1þ ðξqkÞ2� [43]. This yields
a typical scale ξq that increases exponentially rapidly with q
[Fig. 2(b)]. Extrapolating these results, we expect that, even
for large q values, VM behavior will be observed in the
liquid phase up to (large) finite sizes, but that the asymp-
totic behavior at the largest length scales is Ising-like. This
is confirmed by our observation of a transition from
unpinned to pinned order parameter in the liquid phase
as L increases at fixed q [Fig. 3(a)].
Significantly, the crossover from VM to AIM phenom-

enology is also observed in the phase-coexistence region.
Systems with linear size L ≪ ξq exhibit microphase
separation, as in the VM. On the contrary, for L ≫ ξq,
the systems show full phase separation as in the AIM.
Figure 3(b) illustrates this: the transition from microphase
to macrophase separation happens upon increasing the
transverse system size at fixed q, whereas the reverse
transition is seen upon increasing q at fixed system size.
The crossover from VM to AIM behavior can be

summarized in the ðq; TÞ phase diagram at fixed global
density. The three expected phases are present, but one can,
at a given system size, define boundaries between Ising and
Vicsek behavior within the coexistence and the liquid-
phase regions, as shown in Fig. 3(c) and described in its
caption. These boundary lines are displaced to higher and
higher q values as the system size is increased.
Extrapolating to the infinite-size limit, VM-like behavior
is singular, confined to the infinite-q (activeXY) limit. Note
that the transitions in the coexistence and liquid phases
happen at different system sizes in Fig. 3(c). We believe this
to be due to the peculiar and poorly understood mechanism
by which the Vicsek-type long-range correlated fluc-
tuations break the phase separation into a microphase

separation [29]. This need not happen at the same system
size as the pinning of the order parameter in the liquid
although the underlying physics—a crossover from Ising-
like to Vicsek-like physics—is the same.
Effective continuum description.—In equilibrium, clock

models are sometimes described at the field-theoretical
level as continuous spins subjected to an anisotropic
potential VqðϕÞ [32], where ϕ parametrizes the local
direction of order. While usually postulated on symmetry
grounds, we have derived this potential at large q using a
mean-field approximation [38], which yields

VqðϕÞ ¼ −
2ρ

β

Iqðβjmj=ρÞ
I0ðβjmj=ρÞ cosðqϕÞ; ð3Þ

with m and ρ the local magnetization and density,
ϕ ¼ argðmÞ, and InðxÞ the modified Bessel function of
the first kind. Equation (3) is only the leading order
contribution at large q, but direct comparisons with
simulations of the fully connected clock model show that
it is already a good approximation for q ¼ 4 [38].
We now demonstrate that we can understand the behav-

ior of our microscopic active clock model using the mean-
field hydrodynamic description of its isotropic (q ¼ ∞)
limit complemented by the anisotropic potential (3). This
hydrodynamic theory, derived in the Supplemental Material
[38] with standard techniques akin to those used for the
AIM [31], reads

∂tρ ¼ DΔρ − v∇ ·m ð4aÞ

∂tm ¼
�
β

2
− 1 −

β2

8ρ2
m2

�
mþDΔm −

β

ρ
∂ϕVqðϕÞm⊥

þ βv
4ρ

ðm⊥∇ ·m⊥ −m∇ ·mÞ − v
2
∇ρ; ð4bÞ

where m⊥ ≡ ð−my;mxÞ.
Consider a perturbation of the homogeneous ordered

state m ¼ ðm0 þ δmk; δm⊥Þ. To linear order, using
sin qϕ ≈ qϕ ≈ qm⊥=mk, we obtain for the m⊥ field

_δm⊥ ¼ DΔδm⊥ þ fdrift termsg − αqδm⊥ ð5Þ

with αq ¼ 2q2½Iqðβm0=ρ0Þ=I0ðβm0=ρ0Þ�. When αq ¼ 0,
there is no mass on m⊥. This happens when q → ∞, as
expected from the continuous rotational symmetry. With
αq > 0, however, a mass damps the fluctuations of m⊥ and
therefore pins the direction of order. The typical length
scale on which this damping occurs is ξ ¼ ffiffiffiffiffiffiffiffiffiffiffi

D=αq
p

, which
compares well to the crossover length ξq measured in the
microscopic model [Fig. 2(b)] albeit—unsurprisingly—not
quantitatively. To account for the structure factor reported
in Fig. 2 for the microscopic model, we complement
Eq. (4b) with an isotropic centered Gaussian white noise

(a) (b)

FIG. 2. Liquid phase of active clock models (ρ0 ¼ 5.5, β ¼ 4,
system size 800 × 800): (a) S⊥ðkÞ ¼ hm⊥ðkÞm⊥ð−kÞi vs k ¼
ðkk; 0Þ for q ∈ ⟦4; 9⟧. For q ¼ 7 we show the fit to the
Ornstein-Zernicke function α=ð1þ ðξkÞ2Þ, (dashed line).
(b) Crossover length ξq. For red and blue symbols, ξq is
obtained by Ornstein-Zernicke fits of S⊥ðkÞ using k ¼ ðkk; 0Þ
and k ¼ ð0; k⊥Þ, respectively. The green curve is the mean-field
prediction derived from Eq. (5). The black line corresponds to
the value of Lc⊥ðqÞ predicted by our scaling argument, fitting
only the prefactor a in Eq. (9).
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field ηðr; tÞ of unit variance. The structure factor of m⊥,
shown in Fig. 4(a), is found to be qualitatively similar to
that of Fig. 2. Moreover a pinning transition occurs when L
is increased [Fig. 4(b)], as in Fig. 3(a) for the microscopic
models.
Our hydrodynamic description also captures the nature

of the coexistence region. Complementing Eq. (4b) with
the density-dependent coefficients needed to account for
inhomogeneous profiles [38], we show in Fig. 4(c) that
increasing q at a given system size leads from macro- to

microphase separation whereas the opposite happens when
increasing L at fixed q. Again, the VM phenomenology is
observed at large q and small sizes, whereas AIM physics is
found to be the asymptotic behavior at large L.
Scaling argument.—Ultimately, anisotropy is always

relevant asymptotically. This is markedly different from
what happens in equilibrium where, for q > 4, there is a
range of temperature over which the anisotropy is irrelevant
asymptotically, and one observes quasi-long-range order,
as for a continuous spin. The argument used to derive a
crossover length from the linearized hydrodynamic equa-
tion in Eq. (5) therefore fails in equilibrium. Indeed, there is
no homogeneous ordered state to perturb from, only a
quasiordered state with algebraically decaying corre-
lations. This difference is essential, as is clear from look-
ing at the scaling with system size of the energy Hq ¼
gq

R
d2r cos½qθðrÞ� due to the “clock potential.”

Let us then compare the scaling with L of hHqi0, where
the average is taken in the unperturbed system without Hq,
in equilibrium and in the active case. Of course, we do not
actually have a Hamiltonian in this last case, but this
argument should roughly capture the effect of the potential
in the equation of motion (4). In equilibrium, the unper-
turbed state can be described by the spin-wave Hamiltonian
H0 ¼

R
d2rðK=2Þ½∇θðrÞ�2 with stiffness K. The perturba-

tion is then evaluated as

hHqi0 ≈
Z

d2rheiqθðrÞi0 ¼
Z

d2re−
q2

2
Gð0Þ; ð6Þ

where G is Green’s function of the Laplacian in infinite
space. In Fourier space ĜðkÞ ¼ ðT=Kk2Þ, which, in two
dimensions, gives Gð0Þ ¼ T logðL=ΛÞ=ð2πKÞ for a system
of size L, with Λ a short distance cutoff. Inserting this into
Eq. (6) yields

hHqi0 ∼ L2−q2T
4πK: ð7Þ

(a) (b) (c)

FIG. 3. Transition from Vicsek to active Ising behavior as system size increases. (a) Direction of global order in the liquid phase
showing a transition between unpinned and pinned as system size increases. The dashed lines indicate the hours of the clock. β ¼ 4,
ρ0 ¼ 5.5, and q ¼ 8. (b) Snapshots of the density obtained after a long time t ¼ 5 × 105, starting from a large ordered band. The
transition is shifted to larger q as L increases. β ¼ 3.2, ρ0 ¼ 5.5. (c) Phase diagram in the q–T plane at ρ0 ¼ 5.5. The line between
macro- (Gþ LI) and microphase separation (Gþ LV) is defined as the transition between a single band and multiple bands after time
t ¼ 106 at the system size indicated in the legend. The line separating the two liquids (LI and LV ) is defined as the transition between the
pinned and unpinned order parameter orientation after time t ¼ 105.

(a) (b)

(c)

FIG. 4. Simulations of the PDE with noise. (a) Structure factor
S⊥ðkÞ ¼ hm⊥ðkÞm⊥ð−kÞi vs k ¼ ðkk; 0Þ in the ordered phase
for several different q values (system size 200 × 200). (b) Time
series of the orientation of global order Φ in the ordered phase
showing a transition between unpinned and pinned dynamics as
the system size increases (q ¼ 9). (c) Simulations with the
additional density-dependent term necessary to observe band
solutions [38]. As in Fig. 3(b), snapshots of the density after a
long time t ¼ 5 × 105, starting from a large ordered band.
Parameters: β ¼ 4, D ¼ 1, v ¼ 1.8, and ρ0 ¼ 5.5 (a),(b) and
ρ0 ¼ 1.85 (c).

PHYSICAL REVIEW LETTERS 128, 208004 (2022)

208004-4



Equation (7) predicts anisotropy to be relevant as L → ∞
whenever T < Tq ≡ ð8πK=q2Þ and irrelevant otherwise. If
Tq < TBKT ≡ ðπK=2Þ, which happens for q > qc ¼ 4, one
observes a quasi-long range ordered phase where
anisotropy is irrelevant for Tq < T < TBKT, and a long-
range ordered phase where anisotropy is relevant for
T < Tq.
In the active case, the ordered state of the unperturbed

system is long-range ordered. Assuming that θðrÞ shows
Gaussian fluctuations with variance σ2 around its mean
value θ0 leads to heiqθðrÞi0 ¼ e−q

2σ2=2. In turn, Eq. (6)
becomes

hHqiactive0 ≈
Z

d2rheiqθðrÞi0 ¼ L2e−q
2σ2=2: ð8Þ

Anisotropy is thus always relevant when L ≫ Lq ≡ eq
2σ2=4,

so that hHqiactive0 ≫ 1. For L ≪ Lq, on the contrary,
anisotropy is exponentially suppressed by q and Vicsek
physics may be observed.
The argument above qualitatively explains the different

responses to anisotropy observed in the active and passive
cases. In equilibrium, it has been made more rigorous using
renormalization group calculations [32,33]. In the active
case, its essential conclusions hold within a dynamical
renormalization group analysis [24,27] which shows that
the length scale Lc⊥ beyond which the symmetry-breaking
field changes the physics obeys [44]

Lc⊥ðq; σÞ ¼ a exp½q2σ2=ð2zÞ�; ð9Þ

where a is a microscopic length and z a dynamic exponent
whose most recent numerical estimate is z ≃ 1.33 [28].
After measuring σ in a microscopic simulation [45], we
show in Fig. 2(b) that the prediction of Eq. (9) is consistent
with the observed crossover length.
Conclusion.—We have shown that polar flocks are

strongly altered, at large scales, by spatial anisotropy.
This is reflected by the suppression of hallmark features
of the Vicsek model: in the liquid phase the correlations are
short ranged, not scale free, the direction of order is pinned,
not wandering; and one has macrophase instead of micro-
phase separation at coexistence. Interestingly, these
changes occur only beyond a characteristic length scale
that diverges for vanishingly small anisotropy and large q.
In the liquid and coexistence regions, the crossover from
VM to AIM physics can be understood using a hydro-
dynamic description in which anisotropy is accounted for
by an effective potential. In the liquid phase, the difference
with the passive case can be explained using a scaling
argument, which shows that the presence of long-range
order is sufficient to render the anisotropy relevant asymp-
totically for any value of q and T.

Our study calls for understanding spatial anisotropy in
other active-matter systems, like active nematics. Finally,
the absence of any effect of the anisotropy of the lattice
used in our clock model—our results hold for an off-lattice
version—is almost surprising. Whether lattice anisotropy
couples to the aligning dynamics at larger scales than those
considered here surely deserves further study.
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involvement in this work, and Benoît Mahault for a critical
reading of the manuscript. This work was partially sup-
ported by the French ANR through projects NeqFluids to
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[32] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,

Phys. Rev. B 16, 1217 (1977).
[33] S. Elitzur, R. B. Pearson, and J. Shigemitsu, Phys. Rev. D

19, 3698 (1979).
[34] J. Tobochnik, Phys. Rev. B 26, 6201 (1982).
[35] C. M. Lapilli, P. Pfeifer, and C. Wexler, Phys. Rev. Lett. 96,

140603 (2006).
[36] Z.-Q. Li, L.-P. Yang, Z.-Y. Xie, H.-H. Tu, H.-J. Liao, and T.

Xiang, Phys. Rev. E 101, 060105(R) (2020).

[37] These rates are chosen such that, for isolated sites, the
dynamics would satisfy detailed balance with steady-state
probabilities PR ¼ exp½−βHR� and HR ¼ −m2

R=ð2ρRÞ.
[38] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.128.208004 for
numerical details and calculations supporting Eqs. 2 and
4, which include Refs. [39–41].

[39] P. M. Chaikin, T. C. Lubensky, and T. A. Witten, Principles
of Condense Matter Physics (Cambridge University Press,
Cambridge, England, 1995), Vol. 10.

[40] A. P. Solon, J.-B. Caussin, D. Bartolo, H. Chaté, and J.
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