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Mechanical metamaterials exhibit exotic properties that emerge from the interactions of many nearly
rigid building blocks. Determining these properties theoretically has remained an open challenge outside a
few select examples. Here, for a large class of periodic and planar kirigami, we provide a coarse-graining
rule linking the design of the panels and slits to the kirigami’s macroscale deformations. The procedure
gives a system of nonlinear partial differential equations expressing geometric compatibility of angle
functions related to the motion of individual slits. Leveraging known solutions of the partial differential
equations, we present an illuminating agreement between theory and experiment across kirigami designs.
The results reveal a dichotomy of designs that deform with persistent versus decaying slit actuation, which
we explain using the Poisson’s ratio of the unit cell.
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Mechanical metamaterials are solids with exotic proper-
ties arising primarily from the geometry and topology of
their mesostructures. Recent studies have focused on
creating metamaterials with unexpected shape-morphing
capabilities [1,2], as this property is advantageous in
applications spanning robotics, biomedical devices, and
space structures [3–6]. A natural motif in this setting is a
design that exhibits a mechanism [7–9] or floppy mode
[10]: the pattern, when idealized as an assembly of rigid
elements connected along perfect hinges, can be activated
by a continuous motion at zero energy. Yet mechanisms,
even when carefully designed, rarely occur as a natural
response to loads [11]. Instead, the complex elastic inter-
play of a metamaterial’s building blocks results in an exotic
soft mode of deformation. Characterizing soft modes is a
difficult problem. Linear analysis hints at a rich field theory
[12,13], the nonlinear version of which has been uncovered
only in a few examples. Miura-Origami [14], for instance,
takes on a saddlelike shape under bending, a feature linked
to its auxetic behavior in the plane [15]. The rotating
squares (RS) [16] pattern exhibits domain wall motion [17]
and was recently linked to conformal soft modes [18].
In this Letter, we go far beyond any one example to

establish a general coarse-graining rule determining the
exotic, nonlinear soft modes of a large class of mechanism-
based mechanical metamaterials inspired by kirigami. Our
method includes the RS pattern as a special case, illumi-
nating the particular nature of its conformal response. In
general, we find a dichotomy between kirigami systems
that respond by a nonlinear wavelike motion, and others
including conformal kirigami that do not. We turn to
introduce the specific systems treated here, and to describe
our theoretical and experimental results.

Setup and overview of results.—Kirigami traditionally
describes an elastic sheet with a pattern of cuts and folds
[19–21]. More recently, the term has come to include cut
patterns that, by themselves, produce complex deforma-
tions both in and out of plane [22–30]. Here, we study the
2D response of patterns with repeating unit cells of four
convex quadrilateral panels and four parallelogram slits.
These patterns form a large model system for mechanism-
based kirigami [31–33]; their pure mechanism deforma-
tions are unit-cell periodic and counter-rotate the panels.
Figure 1 shows two examples, with the familiar RS pattern

(a)

(b)

FIG. 1. Response of planar kirigami to the heterogeneous
loading conditions shown by the arrows. (a) Rotating squares
pattern. (b) Another pattern with rhombi slits. Insets: a typical
unit cell before and after deformation. The central slit opens
through an angle 2ξ, and the cell rotates by γ.
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in (a). Each kirigami is free to deform as a mechanism
under the loading, yet curiously neither does. Instead,
exotic soft modes reveal themselves in the response.
What determines soft modes? The key insight is that

each unit cell is approximately mechanistic, yielding a bulk
actuation that varies slowly from cell to cell. To character-
ize the response, then, one must solve the geometry
problem of “fitting together” many nearly mechanistic
cells. Coarse graining this problem, we derive a continuum
field theory coupling the kirigami’s macroscopic or effec-
tive deformation to the individual motion of its unit cells.
For each cell, we track the change in the opening angle 2ξ
of its central slit upon deformation, along with an angle γ
giving the cell’s rotation as in Fig. 1. We derive a system of
partial differential equations (PDEs) relating these angles,
whose coefficients depend nonlinearly on ξ as well as on
the unit cell design. Solving this system exactly, we
demonstrate a convincing match with experiments of
different designs.
Our theory divides planar kirigami into two generic

classes, which we term elliptic and hyperbolic based on the
so-called type of the coarse-grained PDE [34,35]. Elliptic
kirigami shows a characteristic decay in actuation away
from loads. In contrast, hyperbolic kirigami deforms with
persistent actuation, via a nonlinear wavelike response.
Surprisingly, this dichotomy turns out to be directly related
to the Poisson’s ratio of the unit cell—elliptic kirigami is
auxetic, while hyperbolic kirigami is not. This result serves
as a powerful demonstration of our continuum field theory,
and adds to the emerging literature connecting Poisson’s
ratio to the qualitative behavior of mechanical metamate-
rials [15,36–38].
Coarse graining planar kirigami.—We begin by intro-

ducing a general kirigami pattern consisting of a periodic
array of unit cells, each having four quad panels and four
parallelogram slits as in Fig. 2(a). The most general setup is
as follows: start by selecting a seed of two quad panels
connected at a corner point, rotate a copy of this seed 180°,
and connect it to the original seed to form a unit cell.
Provided the resulting panels are disjoint, tessellating this
unit cell along a Bravais lattice with basis vectors s ¼
s1 þ s2 þ s3 þ s4 and t ¼ t1 þ t2 þ t3 þ t4 gives a viable
pattern. For an explanation of why this procedure is
exhaustive, see Supplemental Material, Sec. SM.1 [39].
We fix one such pattern and coarse grain its kinematics.
First, we consider mechanisms. Since our kirigami has

parallelogram slits, its pure mechanism deformations are
given by an alternating array of panel rotations specified by
the rotation matrices Rðγ � ξÞ in Fig. 2(a); see the
Supplemental Material, Sec. SM.2 [39] for a derivation.
As before, ξ is the change in the half-opening angle of the
central slit, and γ parametrizes a counterclockwise rotation.
To coarse grain, we view the deformation as distorting the
underlying Bravais lattice: from the top half of the figure,
the original lattice vectors s and t deform to

sdef ¼ RðγÞ½Rð−ξÞðs1 þ s2Þ þRðξÞðs3 þ s4Þ�;
tdef ¼ RðγÞ½Rð−ξÞðt1 þ t4Þ þRðξÞðt2 þ t3Þ�: ð1Þ

This distortion can, in turn, be encoded into the two-by-two
matrix Feff defined by Feffs ¼ sdef and Fefft ¼ tdef , con-
cretely linking Figs. 2(a) and 2(b). We call Feff the coarse-
grained or effective deformation gradient associated with
the mechanism. Evidently,

Feff ¼ RðγÞAðξÞ ð2Þ

for a shape tensor AðξÞ that depends only on ξ and on the
vectors si and ti defining the unit cell. This tensor will
be made explicit in the examples to come (see the
Supplemental Material, Sec. SM.2 [39] for the general
formula).
Having coarse grained the pattern’s mechanisms, we

now extend our viewpoint to its exotic soft modes of
deformation, whose elastic energy scaling is by definition
less than bulk. We derive a PDE for the effective deforma-
tion yeffðxÞ of the kirigami, a continuum field that tracks
the cell-averaged panel motions. Specifically, we consider
elastic effects accounting for the finite size and distortion
of the interpanel hinges, and show in the Supplemental
Material, Sec. SM.3 [39] that the kirigami’s energy per unit
area vanishes with an increasing number of cells provided
yeffðxÞ obeys

(a)

(b)

FIG. 2. Coarse graining a mechanism. (a) Vectors si, ti define
the unit cell, which tessellates along s and t to produce the
pattern. (Note s1 ¼ −t4 and s4 ¼ t3.) In a mechanism, panels
rotate by the rotation matrices Rðγ � ξÞ. (b) Coarse graining
through the lattice defines the effective deformation gradient Feff .
Soft modes agree locally with this picture.
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∇yeffðxÞ ¼ R½γðxÞ�A½ξðxÞ�: ð3Þ

While this PDE is trivially solved by the pure mechanisms
in Eq. (2), it admits many other solutions whose effective
deformation gradients ∇yeffðxÞ and angle fields γðxÞ and
ξðxÞ vary across the sample. We find that Eq. (3) character-
izes soft modes in a doubly asymptotic limit of finely
patterned kirigami, where the hinges are small relative to
the panels and the number of panels is large.
As gradients are curl-free, it follows by taking the curl of

Eq. (3) that (Supplemental Material, Sec. SM.4 [39])

∇γðxÞ ¼ Γ½ξðxÞ�∇ξðxÞ ð4Þ
for ΓðξÞ ¼ ½ATðξÞA0ðξÞ= detAðξÞ�Rðπ=2Þ. Equation (4) is
a PDE reflecting the geometric constraint that every closed
loop in the kirigami must remain closed. This PDE can
sometimes be solved analytically for the angle fields, as we
do in the examples below, but in general we imagine it will
be solved numerically. After finding γðxÞ and ξðxÞ, yeffðxÞ
can be recovered from Eq. (3) uniquely up to a translation.
Equations (3) and (4) furnish a complete effective descrip-
tion of the locally mechanistic kinematics of any planar
kirigami with a unit cell of four quad panels and four
parallelgram slits.
Linear analysis, PDE type, and Poisson’s ratio.—While

the effective description [Eqs. (3) and (4)] is nonlinear, we
can start to learn its implications for kirigami soft modes by
linearizing about a pure mechanism. We do so first for
rhombi-slit kirigami, before returning to general patterns at
the end of this section. The Bravais lattices of rhombi-slit
kirigami remain orthogonal throughout actuation, so that
their shape tensors AðξÞ are diagonal. This simplification
greatly clarifies the exposition without compromising the
generality of our results, as we shall see.
Per Fig. 3, a rhombi-slit kirigami is defined by param-

eters λ1;…; λ4 that can take any value in [0, 1], and an
aspect ratio ar > 0. Their shape tensors satisfy

AðξÞ ¼ μ1ðξÞe1 ⊗ e1 þ μ2ðξÞe2 ⊗ e2;

μ1ðξÞ ¼ cos ξ − α sin ξ; μ2ðξÞ ¼ cos ξþ β sin ξ;

α ¼ arðλ4 − λ2Þ; β ¼ a−1r ðλ1 − λ3Þ: ð5Þ

Here, α and β encode the geometry of the unit cell, μ1ðξÞ
and μ2ðξÞ give the stretch or contraction of its sides under a
mechanism, and e1 and e2 are orthonormal vectors along
the initial slit axes. Finally, ΓðξÞ in Eq. (4) satisfies

ΓðξÞ ¼ Γ12ðξÞe1 ⊗ e2 þ Γ21ðξÞe2 ⊗ e1 ð6Þ

for Γ12ðξÞ ¼ −μ01ðξÞ=μ2ðξÞ and Γ21ðξÞ ¼ μ02ðξÞ=μ1ðξÞ.
Equations (5) and (6) follow from Eqs. (1) and (2) after
choosing appropriate si¼ siðλ1;…; λ4; arÞ, ti¼ tiðλ1;…;
λ4; arÞ (Supplemental Material, Sec. SM.2 [39]).

Proceeding perturbatively, we write ξðxÞ ¼ ξ0 þ δξðxÞ
and γðxÞ ¼ δγðxÞ for small angles δξðxÞ and δγðxÞ, and let
yeffðxÞ ¼ Aðξ0Þxþ u½Aðξ0Þx� for a displacement uðyÞ
about a pure mechanism with constant slit actuation ξ0.
(Taking γ0 ¼ 0 fixes the frame of actuation without loss of
generality.) Expanding Eq. (3) to linear order and comput-
ing the strain εðyÞ ¼ 1

2
½∇uðyÞ þ∇uTðyÞ� yields

ε½Aðξ0Þx� ¼ δξðxÞ
�
ε1ðξ0Þ 0

0 ε2ðξ0Þ

�
ð7Þ

with εiðξ0Þ ¼ μ0iðξ0Þ=μiðξ0Þ, i ¼ 1, 2. Similarly, expanding
Eq. (4) to linear order and taking its curl gives that

0 ¼ ½Γ21ðξ0Þ∂2
1 − Γ12ðξ0Þ∂2

2�δξðxÞ: ð8Þ

Both equations must hold for the perturbation to be
consistent with the effective theory.
The ratio of principal strains in Eq. (7) defines an

effective Poisson’s ratio which turns out to be directly
related to the coefficients in Eq. (8):

ν21ðξ0Þ ≔ −
ε2ðξ0Þ
ε1ðξ0Þ

¼ Γ21ðξ0Þ
Γ12ðξ0Þ

μ21ðξ0Þ
μ22ðξ0Þ

: ð9Þ

This link has remarkable implications. Writing Eq. (8) as
∂2
2δξðxÞ ¼ ½μ22ðξ0Þ=μ21ðξ0Þ�ν21ðξ0Þ∂2

1δξðxÞ and applying
standard PDE theory, we discover that the overall structure
of the perturbations is governed by the sign of the Poisson’s
ratio, i.e., by whether the pattern is auxetic or not:

FIG. 3. Effective Poisson’s ratio ν21 as a function of slit
actuation ξ for different rhombi-slit kirigami. The plot fixes α ¼
−0.9 and varies β from 0 to 0.9. The RS pattern on the lower left
sits at the lower extreme β ¼ 0.9. It is purely dilational
(ν21 ¼ −1) and is auxetic for all ξ. The upper extreme β ¼ 0
arises for the design on the upper left. It is nonauxetic (ν21 > 0)
for all relevant ξ > 0. Some designs transition between auxetic
and nonauxetic behavior as a function of ξ.
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�
ν21ðξ0Þ < 0 elliptic and auxetic;

ν21ðξ0Þ > 0 hyperbolic and nonauxetic:
ð10Þ

Figure 3 plots ν21 for a family of designs and actuations.
The terms hyperbolic and elliptic come from PDE theory

where an equation’s type, found by linearization, informs
the structure of its solutions [34,35]. Here in the hyperbolic
case, Eq. (8) is the classical wave equation with wave speed
c ¼ ½μ2ðξ0Þ=μ1ðξ0Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν21ðξ0Þ

p
, the x1 and x2 coordinates

being like “space” and “time.” Linearization predicts
spatially modulated, temporally static waves for small
loads; motivated by this, we go on below to construct a
branch of nonlinear wave solutions describing the hyper-
bolic kirigami in Fig. 1(b). In contrast, the RS pattern in
Fig. 1(a) is auxetic and so is elliptic. Instead of waves,
elliptic kirigami shows a decay in actuation away from
loads. We highlight the strong maximum principle of
elliptic PDEs [35]: the maximum and minimum actuation
in an elliptic kirigami can only occur at its boundary, unless
it deforms by a constant mechanism. No such principle
holds for hyperbolic kirigami.
Remarkably, the same coupling in Eq. (10) between

Poisson’s ratio and PDE type continues to hold for the
general class of quad-based kirigami patterns treated in this
Letter. We sketch the main ideas to provide clarity on this
important result (see the Supplemental Material, Sec. SM.5
[39] for details). Linearizing about a mechanism leads in
the general case to a strain ε½Aðξ0Þx� with eigenvalues

δξðxÞεiðξ0Þ, i ¼ 1, 2. Passing to a principal frame, we find
that the effective Poisson’s ratio of the pattern—which
dictates its auxeticity—is still given by the first expression
in Eq. (9). Equation (8) becomes a general second order
linear PDE: cijðξ0Þ∂2

ijδξðxÞ ¼ 0 with summation implied.
It is elliptic or hyperbolic according to the sign of the
discriminant of its coefficients. A coordinate transforma-
tion reveals Eq. (10).
Nonlinear analysis and examples.—The previous linear

analysis addresses the character of the kirigami’s response
nearby a pure mechanism, but does not prescribe it at finite
loads. We now present several exact solutions of the PDE
system [Eqs. (3) and (4)] that capture the nonlinear
deformations of the kirigami in Fig. 4. Our solutions are
based on known results from PDE theory, which we detail
in the Supplemental Material, Sec. SM.6 [39] and sum-
marize here. Using them, we plot the panel motions with an
ansatz that rotates and translates the panels to fit the
solution. Due to the finiteness of the sample, one may
expect slight deviations between theory and experiment,
which scale with the relative panel size. See the
Supplemental Material, Sec. SM.3 [39] for more details.
Nonlinear waves. Figure 4(a) shows the α ¼ −0.9,

β ¼ 0 pattern from the top left of Fig. 3, which remains
nonauxetic, and thus hyperbolic, for ξ ∈ ð0; 0.235πÞ. This
hyperbolicity is borne out through the existence of non-
linear simple wave solutions to Eq. (4), defined by the
criteria that ξ ¼ ξ½θðxÞ� and γ ¼ γ½θðxÞ� for a scalar
function θðxÞ. As such, the angles vary across envelopes

(a) (b) (c)

(d) (e) (f)

FIG. 4. Comparison between theory and experiments of rhombi-slit kirigami. (a),(d) Two 16 × 16 cell patterns before deformation,
with opposite Poisson’s ratios and types. Top row is nonauxetic and hyperbolic. Bottom row is auxetic and elliptic. (b),(e) Left entries are
experimental samples pulled along their centerlines. Right entries show theoretical panel motions, obtained from exact solutions of the
effective PDEs by the procedure in the Supplemental Material, Sec. SM.3 [39]. (c),(f) Annular deformations produced experimentally
(left) and using the theory (right). Color maps show the slit actuation angle ξðxÞ, extracted from the experiment per Supplemental
Material, Sec. SM.7 [39].
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of straight line segments called characteristic curves. The
term “simple wave” comes from compressible gas dynam-
ics, where the same functional form governs gas densities
varying next to regions of constant density [40]. For
kirigami, simple waves alleviate slit openings next to
regions of uniform actuation.
The left part of Fig. 4(b) shows the experimental

specimen pulled at its left and right ends along its
centerline. The slits open by an essentially constant amount
in a central diamond region (orange), and recede toward the
specimen’s corners. Note the “fanning out” of contours of
constant slit actuation from where the loads are applied.
The panel motions of a simple wave solution match these
features on the right of Fig. 4(b). The solution’s straight line
contours are characteristic curves; its innermost character-
istics are chosen to match the slit actuation of the central
diamond (Supplemental Material, Sec. SM.6 [39]).
Conformal maps. Recent work [18] has noted the

relevance of conformal maps for kirigami. Adding to this
discussion, and as an example of the more general elliptic
class, we note using Eq. (5) that the only rhombi-slit
kirigami designs that deform conformally [μ1ðξÞ ¼ μ2ðξÞ
for all ξ by definition [41] ] have α ¼ −β and ν21ðξÞ ¼ −1.
This includes the RS pattern in Fig. 4(d), fabricated
according to the lower left α ¼ −0.9 design in Fig. 3.
We highlight the RS pattern due to its dramatic shape
morphing. Conformal mappings are basic examples in
complex analysis [42], enabling numerous solutions
to Eq. (4).
The left part of Fig. 4(e) shows the RS pattern pulled at

its left and right ends. Its slits open up dramatically at the
loading points and remain closed at the corners: the largest
and smallest openings are at the boundary, per the maxi-
mum principle. Contours of constant slit actuation form
arcs around these points. On the right of Fig. 4(e), we fit the
deformed boundary of the pattern to a conformal map
(Supplemental Material, Sec. SM.6 [39]). The solution
recovers the locations where the slits are most open and
closed, and qualitatively matches their variations in
the bulk.
Annuli. Though one may think of hyerperbolic and

elliptic kirigami as a dichotomy, and this is true as far as
auxeticity is concerned, we close by pointing out the
existence of some special effective deformations that are
“universal” in that they occur for both. One example is the
annular deformation in Figs. 4(c) and 4(f), which arises
from Eq. (4) under the condition that ξðxÞ is either only a
function of x1 or of x2. All rhombi-slit kirigami patterns are
capable of this deformation, as we demonstrate using the
previous hyperbolic (c) and elliptic (f) designs. Note unlike
the previous examples, these experiments are done using
pure displacement boundary conditions.
Discussion.—Looking forward, while our emphasis here

was on the derivation of coarse-grained PDEs capturing
bulk geometric constraints for planar kirigami, we set aside

the important question of the forces underlying them.
Understanding the interpanel forces more closely should
eventually lead to a complete continuum theory predicting
exactly which exotic soft mode will arise in response to a
given load. We envision minimizing elastic energy at a
higher order than done here, and deriving natural boundary
conditions to supplement the PDEs. Nevertheless, our
results show that the effective PDE system [Eqs. (3) and
(4)] plays the dominant, constraining role. This is con-
sistent with the conformal elasticity of Ref. [18].
More broadly, we expect that an effective PDE of a

geometric origin exists to constrain the bulk behavior of
mechanical metamaterials beyond kirigami. Such PDEs
have been found for certain origami designs [36,37], via a
differential geometric argument akin to our passage from
Eq. (3) to Eq. (4). In origami, one also finds a surprising
coupling between the Poisson’s ratio of the mechanisms
and certain fine features of exotic soft modes. Are such
couplings universal? What about the role of heterogeneity
[29,30,43,44]? Can coarse graining lead to constitutive
models for mechanical metamaterials, common to practical
engineering [45,46], or to effective descriptions of their
dynamics [47]? While there are many avenues left to
explore, our work on the soft modes of planar kirigami
is a convincing step toward the discovery of a continuum
theory for mechanical metamaterials at large.
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