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From a theoretical study of the mechanical response of jammed materials comprising frictionless and
overdamped particles under oscillatory shear, we find that the material becomes soft, and the loss modulus
remains nonzero even in an absorbing state where any irreversible plastic deformation does not exist. The
trajectories of the particles in this region exhibit hysteresis loops. We succeed in clarifying the origin of the
softening of the material and the residual loss modulus with the aid of Fourier analysis. We also clarify the
roles of the yielding point in the softening to distinguish the plastic deformation from reversible
deformation in the absorbing state.
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Introduction.—The mechanical response of jammed
disordered materials, such as granular materials, foams,
emulsions, and colloidal suspensions, garners much atten-
tion [1,2]. For vanishingly small strain, the shear stress σ is
proportional to the shear strain γ, which is characterized by
the shear modulus satisfying a critical scaling law near the
jamming point ϕJ [3–5]. However, the region of the linear
response is quite narrow near ϕJ [6,7]. Hence, revealing the
nonlinear response is essential for understanding the
dynamics of disordered materials.
In crystalline materials, the nonlinear response originates

from yielding associated with irreversible plastic deforma-
tion. Yielding also takes place in disordered materials when
the strain is sufficiently large [8–13]. The yielding tran-
sition attracts much attention among researchers as an
example of the reversible-irreversible transition [14–17].
When plastic deformation causes rearrangements of contact
networks, the mechanical response becomes nonlinear. It
had been believed that plastic deformation is always
necessary for the nonlinear response. Unlike this expect-
ation, recent studies have revealed that plastic deformation
is not always necessary for the nonlinear response [18–22].
Under steady shear, σ becomes hypoelastic before the
yielding [18,20], and the storage modulus in the steady
state after applying a sufficient number of cyclic shears
decreases as the strain amplitude increases without any
irreversible plastic deformation [21]. The decrease of the
storage modulus is called softening.
It is known that plastic deformation causes dissipation

characterized by the loss modulus [21,22]. It is natural that
the loss modulus disappears in quasistatic strains without
any plastic deformation. However, we need a careful check
of this naive picture, because the loss modulus might be

related to the softening observed without any plastic
deformation.
The mechanical response should be related to the motion

of particles constituting the disordered materials. This
suggests that the trajectories of particles provide information
on the softening of the materials. Several studies have
reported that the trajectories of dense particles form closed
loops under oscillatory shear below the yielding point
associated with reversible contact changes where there
are some cyclic open and closed contacts between particles
[23–34]. The formation of closed loops means that the
system is reduced to an absorbing state after some time has
passed. A previous study numerically showed that the
softening in the absorbing state becomes significant when
there are closed loops associatedwithmany contact changes.
However, the quantitative relationship remains unclear [21].
In this Letter, we numerically investigate jammed mate-

rials comprising N frictionless and overdamped particles
under oscillatory shear to clarify the origin of the softening.
For this purpose, we focus on the roles of the trajectories to
clarify the relationship between the softening in the
absorbing state and the softening in the plastic regime.
We find that the shear modulus exhibits softening, and the
loss modulus remains nonzero even in the absorbing state
below the yielding point. The trajectory of a test particle
forms a nontrivial loop in this region. With the aid of
Fourier analysis, we investigate the geometric structure of
the trajectories and reveal the role of Fourier components
for the storage and loss moduli. We also present the
theoretical expressions for the storage and loss moduli,
whose quantitative validities are numerically confirmed.
Setup.—Let us consider a jammed two-dimensional

system consisting of frictionless particles under oscillatory
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shear. The particles are driven by the overdamped equation
with Stokes’ drag under Lees-Edwards boundary condi-
tions [35], where the equation of motion is given by

ζ

�
d
dt

ri − _γðtÞyiex
�

¼ −
X
j≠i

∂
∂ri UðrijÞ; ð1Þ

with the position ri ¼ ðxi; yiÞ of particle i. Here, ζ and _γðtÞ
are the drag coefficient and strain rate, respectively. The
interaction potential UðrijÞ is assumed to be

UðrijÞ ¼
k
2
ðdij − rijÞ2Θðdij − rijÞ; ð2Þ

where ΘðxÞ, k, dij, and rij ¼ jrijj ¼ jri − rij are the
Heaviside step function satisfying ΘðxÞ ¼ 1 for x ≥ 0
and ΘðxÞ ¼ 0 otherwise, the spring constant, the average
diameter of particles i and j, and the distance between
particles i and j, respectively. The system is bidisperse and
consists of an equal number of particles with diameters d0
and d0=1.4. We have verified that particles with inertia
and damping at contact, which corresponds to the model
in Ref. [21], exhibit almost identical behavior in our
system [36].
We prepare the initial state with a given packing fraction

ϕ by slowly compressing the system from a state below the
jamming point ϕJ ≃ 0.841 [5]. The oscillatory shear strain
is applied for nc cycles as

γðθÞ ¼ γ0 sin θ ð3Þ

with the phase θ ¼ ωt, where γ0 and ω are the strain
amplitude and angular frequency, respectively. Note that
the shear rate satisfies _γðtÞ ¼ ðdθ=dtÞðd=dθÞγðθÞ. In the
last cycle, we measure the storage and loss moduli G0 and
G00, respectively, given by [37]

G0 ¼ 1

π

Z
2π

0

dθ
hσðθÞi sin θ

γ0
; ð4Þ

G00 ¼ 1

π

Z
2π

0

dθ
hσðθÞi cos θ

γ0
; ð5Þ

with shear stress

σ ¼ 1

L2

X
i

X
j>i

xijyij
rij

U0ðrijÞ; ð6Þ

where xij ¼ xi − xj, yij ¼ yi − yj, and h·i represents the
ensemble average, and L is the linear system size. See
Ref. [36] for the stress-strain curves in our system. We have
verified that G0 and G00 are independent of N and nc for
N ≥ 1000 and nc ≥ 20 [36]. We use N ¼ 1000 and nc ¼
20 in our numerical analysis. We adopt the Euler method
using the time step Δt ¼ 0.05τ0 with τ0 ¼ ζ=k.

Closed trajectories.—As the number of cycles increases,
the system reaches a statistically steady state through a
transient regime as shown in Ref. [36]. Figure 1 displays
typical nonaffine trajectories of a particle

r̃iðθÞ ¼ riðθÞ − γðθÞyiðθÞex ð7Þ

in the last two cycles with ϕ ¼ 0.87 andω ¼ 10−4τ−10 in the
steady state. In Fig. 1(a) (γ0 ¼ 0.02), the trajectories are
closed, and the particle returns to its original position after
every cycle. This indicates that irreversible plastic defor-
mation does not occur, at least in the last two cycles. The
closed trajectories form nontrivial loops, which differ from
ellipses or lines observed for small γ0 as shown in Ref. [36].
In Fig. 1(b) (γ0 ¼ 0.1), the particle moves away from its
original positions after a cycle, as a characteristic behavior
of plastic deformation. Here, we define the absorbing state
where the displacement of each particle after several cycles
is smaller than dc ¼ 10−4d0 in the statistically steady state.
We also define the plastic state where the displacement
after several cycles exceeds dc. It should be noted that
some rare samples exhibit trajectories where particles
return to their original positions after more than one cycle
[27,28,30,31,33]. However, our theoretical results shown
below are unchanged even if such samples exist [36].
Shear modulus.—We plot the storage modulusG0 against

the strain amplitude γ0 for ω ¼ 10−4τ−10 with ϕ ¼ 0.870,
0.860, 0.850, and 0.845 in Fig. 2. The yielding points to
distinguish the absorbing state from the plastic state for
various ϕ are shown by open pentagons [36]. The storage
modulusG0 decreases as γ0 increases, but the yielding point
is not identical to the point where G0 starts to decrease. We
call the decrease for γ0 < γc, the yielding strain amplitude,
the softening in the absorbing state (SAS). We also call the
decrease for γ0 > γc the softening in the plastic state (SPS).
It is remarkable that SAS is continuously connected to SPS,
while a shoulder in G0 appears in SPS for 0.04 ≤ γ0 ≤ 0.1
with ϕ ¼ 0.845. In the inset of Fig. 2, we demonstrate that

(a) (b)

FIG. 1. Nonaffine particle trajectories in the last two cycles for
γ0 ¼ 0.02 (a) and 0.1 (b) with ω ¼ 10−4τ−10 and ϕ ¼ 0.87, which
corresponds to ϕ − ϕJ ¼ 0.029. The circles represent the trajec-
tory in the last cycle. The line represents the trajectory in the
second to the last cycle.
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G0 and γ0 can be scaled by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ − ϕJ

p
and ϕ − ϕJ, respec-

tively, as indicated in Refs. [3,21]. We have confirmed that
G0 is independent of ω for ω ≤ 10−3τ−10 .
Figure 3(a) displays the loss modulus G00 in the absorb-

ing state against γ0 for ω ¼ 10−4τ−10 with ϕ ¼ 0.870, 0.860,
0.850, and 0.845, in which G00 does not strongly depend on
ϕ and γ0. See Ref. [36] for G00 in the plastic state. In
Fig. 3(b), we plot the loss modulus G00 in the absorbing
state against ω for ϕ ¼ 0.87 with γ ¼ 0.01. Remarkably,
G00 in Fig. 3(b) seems to converge to a nonzero value in the
limit ω → 0, which contrasts with the behavior of the
Kelvin-Voigt model (i.e., G00 ∝ ω [38]). This behavior
indicates that dissipation remains even in the quasistatic
limit in the absorbing state. Note that G00 ∝ ω is recovered
when we adopt a sufficiently small γ0 [36].
Fourier analysis.—In the absorbing state, the nonaffine

trajectory r̃iðθÞ of particle i can be expressed in a Fourier
series as

r̃iðθÞ ¼ Ri þ
X∞
n¼1

ðaðnÞi sin nθ þ bðnÞi cos nθÞ; ð8Þ

with the center of the trajectory

Ri ¼ ðXi; YiÞ ¼
1

2π

Z
2π

0

dθr̃iðθÞ; ð9Þ

and the Fourier coefficients

aðnÞi ¼ 1

π

Z
2π

0

dθ sin nθ r̃iðθÞ; ð10Þ

bðnÞi ¼ 1

π

Z
2π

0

dθ cos nθ r̃iðθÞ: ð11Þ

If aðnÞi ¼ bðnÞi ¼ 0 for all n, the particle motion is affine.

When only að1Þi is nonzero, the nonaffine trajectory is a
straight line, as shown in Fig. 4(a). In contrast, the

trajectory exhibits an ellipse when bð1Þi is also nonzero,
as shown in Fig. 4(b). A nontrivial trajectory, as shown in
Fig. 1(a), contains modes with n ≥ 2. See Ref. [36] for the
relationship between the trajectories and the Fourier
coefficients.
In. Fig. 5(a), we plot the magnitudes of the Fourier

components

aðnÞ ¼
X
i

hjaðnÞi ji=N; bðnÞ ¼
X
i

hjbðnÞi ji=N; ð12Þ

FIG. 2. Storage modulus G0 obtained in our simulation (filled
symbols) against γ0 for ω ¼ 10−4τ−10 with ϕ ¼ 0.870, 0.860,
0.850, and 0.845, which corresponds to ϕ − ϕJ ¼ 0.029, 0.019,
0.009, and 0.004, respectively. The legends represent the packing
fraction ϕ. The data in the absorbing (plastic) state obtained in our
simulation are shown in larger (smaller) filled symbols. The open
pentagons represent the yielding strain amplitude γc, while other
open symbols represent the theoretical expression using G0

T in
Eq. (14). (Inset) Scaled storage modulus G̃0 ¼ G0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ − ϕJ

p
obtained in our simulation (filled symbols) and its theoretical
expression using G0

T (open symbols) in Eq. (14) against scaled
strain amplitude γ̃0 ¼ γ0=ðϕ − ϕJÞ in the absorbing state.

(a) (b)

FIG. 3. (a) Loss modulus G00 in the absorbing state obtained in
our simulation (filled symbols) and its theoretical expression G00

T
(open symbols) in Eq. (15) against γ0 for ω ¼ 10−4τ−10 with
ϕ ¼ 0.870, 0.860, 0.850, and 0.845, which corresponds to
ϕ − ϕJ ¼ 0.029, 0.019, 0.009, and 0.004, respectively. (b) Loss
modulus G00 against ωτ0 for ϕ ¼ 0.87 with γ0 ¼ 0.01.

(a) (b)

FIG. 4. Schematics of the nonaffine trajectory when only að1Þi is

nonzero (a) and only að1Þi and bð1Þi are nonzero (b).
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obtained from our numerical data using Eqs. (10) and (11)
against n for ϕ ¼ 0.87 and γ0 ¼ 0.01 with ωτ0 ¼ 10−4 and
10−5. The Fourier components do not strongly depend on
ω, which indicates that the nontrivial loops do not dis-
appear in the limit ω → 0. For different ϕ > ϕJ and
γ0 ≥ 10−3, we have confirmed that að1Þ is always the
largest [39], the other modes are nonzero to make loops
with nonzero areas, and the Fourier components are
independent of ω. In Fig. 5(b), we plot aðnÞ=γ0 and
bðnÞ=γ0 against γ0 for ϕ ¼ 0.87 and ωτ0 ¼ 10−4 with
n ¼ 1, where aðnÞ=γ0 and bðnÞ=γ0 are almost independent
of γ0. This behavior is consistent with that for the number
of contact changes [36].
Theoretical analysis.—Now, let us reproduce the

numerical results by a simple analytic calculation.
Substituting Eq. (8) into Eq. (7), rijðθÞ is given by

rijðθÞ¼Rijþγ0Yij sinθexþ
X∞
n¼1

ðaðnÞij sinnθþbðnÞij cosnθÞ:

ð13Þ
Here, we define aðnÞij ¼ aðnÞi − aðnÞj , bðnÞij ¼ bðnÞi − bðnÞj , and
Rij ¼ ðXij; YijÞ ¼ Ri − Rj. Substituting Eq. (13) into
Eq. (4) with Eq. (6) and neglecting the terms of Oðγ0Þ,
we obtain the expression G0

T of the storage modulus in
SAS as [36]

G0
T ¼ −

1

L2

X
i;j

�
X2
ijY

2
ij

Rij
Ψ0ðRijÞ

�
−

1

L2

X
i;j

hY2
ijΨðRijÞi

−
1

L2

X
i;j

��
að1Þij;x

γ0
Yij þ Xij

að1Þij;y

γ0

�
ΨðRijÞ

�

−
1

L2

X
i;j

�
XijYijΨ0ðRijÞ

Rij · a
ð1Þ
ij

γ0Rij

�
; ð14Þ

where ΨðrÞ ¼ −U0ðrÞ=r. Here, we have assumed jaðnÞi j ∼
jbðnÞi j ∼ γ0 and γ0 ≪ 1. In the expression of Eq. (14), only

the first harmonic contribution from að1Þi can survive

because of Eq. (5). Note that Ri and að1Þi cannot be
determined within the theory but are determined by our
simulation data. In Fig. 2, we plot the theoretical prediction
G0

T as open symbols. The theoretical prediction quantita-
tively reproduces the numerical results except for large γ0,
which is out of the scope of our theory. The first and second
terms on the right-hand side (rhs) of Eq. (14) represent the
contributions from the affine transformation depending
only on Ri, while the third and fourth terms including

að1Þij =γ0 indicate the contributions from the nonaffine
trajectories. As shown in Ref. [36], the contributions from
the nonaffine trajectories are almost independent of γ0,
which is consistent with the behavior of að1Þ=γ0 shown in
Fig. 5(b). Numerical evaluation in Ref. [36] reveals that
SAS is dominated by the first term on rhs of Eq. (14)
through the change of Ri. The center of the nonaffine
trajectories Ri is changed by the rearrangement of the
configuration during the transient to the absorbing state,
which is consistent with the memory formation of dense
particles during oscillatory shear [40–42].
The theoretical expression G00

T of the loss modulus in
SAS is given by [36]

G00
T ¼ −

1

L2

X
i;j

��
bð1Þij;x

γ0
Yij þ Xij

bð1Þij;y

γ0

�
ΨðRijÞ

�

−
1

L2

X
i;j

�
XijYijΨ0ðRijÞRij

Rij · b
ð1Þ
ij

γ0R2
ij

�
; ð15Þ

where we have used the same assumption to obtain
Eq. (14). Similar to the case of G0

T , only the contribution

of the first harmonics bð1Þi in the expression of Eq. (8) can

survive because of Eq. (5). Note that bð1Þi cannot be
determined within the theory but is evaluated by the
simulation data. The loss modulus depends only on the

nonaffine contribution including bð1Þi . The amplitude bð1Þ

remains nonzero in the limit ω → 0, which leads to the
residual loss modulus as in Fig. 3(b). We plot the theoretical
expression G00

T using the open symbols in Fig. 3(a). G00
T also

reproduces the numerical results except for large γ0. Thus,
our theory reveals the quantitative relationship between the
loss modulus and closed trajectories, which was suggested
in Ref. [26].
Conclusion.—We numerically studied the mechanical

response of jammed materials consisting of frictionless and
overdamped particles under oscillatory shear. The shear
modulus exhibits SAS and the residual loss modulus exists
in the quasi-static limit in the absorbing state. Through
Fourier analysis of the closed trajectories, the theoretical

(a) (b)

FIG. 5. (a) Magnitudes of Fourier coefficients aðnÞ and bðnÞ

against n for ϕ ¼ 0.87 and γ0 ¼ 0.02 with ωτ0 ¼ 10−4 (filled
symbols) and 10−5 (open symbols). (b) Magnitudes of the
Fourier coefficients aðnÞ and bðnÞ normalized by γ0 against γ0
for ϕ ¼ 0.87 and ωτ0 ¼ 10−4 with n ¼ 1. ϕ ¼ 0.87 corre-
sponds to ϕ − ϕJ ¼ 0.029.
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expressions for the storage and loss moduli quantitatively
agree with the numerical results.
Reference [4] reported that the loss modulus vanishes in

the absorbing jammed states in the limit ω → 0, which is
inconsistent with our result. It is noteworthy that Ref. [4]
did not consider any transient state associated with contact
changes before the system reaches the absorbing state.
Since the loss modulus is expected to be given by the
generalized Green-Kubo formula [43,44], the origin of
the residual loss modulus might be plastic events in the
transient dynamics.
Recent studies of large amplitude oscillatory shear

(LAOS) reveal that there are contributions from higher
harmonics in the mechanical response of nonlinear visco-
elastic materials [45,46]. We calculate nonlinear viscoelas-
tic moduli G0

n and G00
n with n ≥ 2 and confirm that such

higher order moduli are negligible in our system as shown
in Ref. [36].
In this Letter, we focus only on the nonlinear response of

disordered frictionless particles. However, even frictional
grains and exhibit SAS depending on the friction coef-
ficient [47]. Therefore, an extension of our theory to these
systems will be our future work.
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