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We simulate vertically shaken dense granular packings with horizontal periodic boundary conditions. A
coordinated translating motion of the whole medium emerges when the horizontal symmetry is broken by
disorder or defects in the packing and the shaking is weak enough to conserve the structure. We argue that
such a drift originates in the interplay between structural symmetry breaking and frictional forces
transmitted by the vibrating plate. A nonlinear ratchet model with stick slips reproduces many faces of the
phenomenon. The collective motion discussed here underlies phenomena observed recently with
vibrofluidized granular materials, such as persistent rotations and anomalous diffusion.
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Introduction.—One of the major challenges of statistical
mechanics, nowadays, is understanding systems far from
equilibrium, e.g., in the presence of energy flows or
dissipation [1]. A realm of physics where fluctuations
and lack of thermodynamic equilibrium are ubiquitous is
soft matter [2] and, in this context, an established test
ground for theories is provided by vibrofluidized granular
systems [3–6] where energy is continuously injected from
an external source and dissipated in friction. When isotropy
is broken, a fraction of this energy current can be exploited
to realize a ratchet effect [7–12] similar to what is seen in
active matter [13]. A series of recent granular experiments
suggests that spontaneous persistent drifts emerge in the
presence of isotropic disorder: this is revealed by super-
diffusion [14], which has been connected to transient drifts
with very long relaxation times [15,16], or by the appear-
ance of steady rotations of disks in dense vibrated packings
[17] and by the emergence of collective motions under
swirling excitations [18,19]. In all these examples random
energy is converted into a steady flow, realizing an
interesting class of “disordered engines.”
Here we aim at understanding the general ingredients

underlying these effects, focusing on a few simplified
setups and—in the conclusions—on a model of frictional
ratchet. The mechanism investigated explains the afore-
mentioned phenomena as it represents their translational
(instead of rotational) [14–16], collective (instead of
individual) [17], and spontaneous (instead of externally
stimulated) [18,19] counterpart.
Numerical setup.—We simulate, through an established

discrete elements method, a system of N spherical grains
confined by hard walls and/or periodic boundary conditions
(PBC) with different geometries. Each grain has radius Ri,
massmi, position rαi, velocity vαi, and angular velocity ωαi,
where α ¼ fx; y; zg and i ¼ f1;…; Ng. The grain-grain

and grain-boundary contact forces follow the Hertz Mindlin
model; see details in the Supplemental Material [20]. In all
cases the setup is enclosed in a 3D box of height 10 ×
2maxi Ri, energy is injected by vertical vibrations zðtÞ ¼
A cosð2πftÞ of the upper and lower confining hard walls,
and there is one or more horizontal direction with infinite
horizon (i.e., where movement is not constrained by walls).
In quasi-2D setups [cases in Figs. 1(a)–1(g), N ¼ 60] x has
PBC while y is confined by two parallel vertical walls of
width L ¼ 32 mm separated by a distance d ¼ 2maxi Ri.
In the full 3D case in Fig. 1(h) (N ¼ 2600) both x
and y directions have PBC, and the base of the box has
dimensions 98 × 98 mm2. In the full 3D case in Fig. 1(i)

FIG. 1. Simulation geometries. Quasi 2D vertical layers can be
random polydisperse (a)—with equal proportions of three species
of radii Ri ¼ f1.5; 2.0; 2.5g mm—or ordered monodisperse (b)–
(g)—Ri ¼ R ¼ 2 mm—with, eventually, defects. The defect
nomenclature is related to the position of the grain that breaks
the symmetry. The 3D setups are a cubic (h) and cone-base
cylinder (i) (see Ref. [15] for details), both monodisperse.
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(N ¼ 2600) the box is a cylinder with a conical-shaped
base, identical to what was previously used in experiments
and simulations [14–16]. The shaking intensity is measured
by Γ ¼ Að2πfÞ2=g, where g is the gravity acceleration.
Here we always vary Γ by A keeping f constant at 100 Hz
in the quasi-2D simulation and at 200 Hz in the all
other ones.
Regarding the quasi-2D setups, we prepare the initial

state of our packings in two main ways: The first one
consists of randomly pouring a polydisperse assembly of
grains in the container; initial velocities are zero, but during
the pouring dynamics they acquire energy and rapidly reach
a stationary statistics. The secondone is obtainedbyplacing a
monodisperse assembly on a hexagonal lattice with the
possibility to have vacancies in determined sites, while the
particles’ initial velocities are drawn from a Gaussian
distribution with zero mean and a variance small enough
to keep the crystal stable. For the 3D cases we simply pour
monodisperse grains in the containers. Since the latter do not
satisfy the right proportions for crystallization the resulting
packings are fairly disordered. The monodisperse packings
with quasi-2D geometry [Figs. 1(b)–1(g)] can be without
defects [Fig. 1(g)], or with four symmetric defects [Fig. 1(f)],
or with three defects placed to break in different ways
the symmetry of the crystal with respect to z and x
[Figs. 1(b)–1(e)]. The polydisperse quasi-2D packing
[Fig. 1(a)] is inspired by a recent experimental and numerical
study [17] with shaken disks without PBC: for Γ low enough
a persistent net angular velocity is seen for each disk. We
verified (see the Supplemental Material [20]) that such
persistent rotational modes are present also in our simula-
tions with spheres, in all the geometries explored here, with
both hard walls and PBC. However, in this Letter, we focus
on simulations with horizontal PBC only, where a different
phenomenon, namely the collective horizontal persistent
drift, superimposed on the previously observed rotational
modes, appears.
Drifting disordered packings.—We start from polydis-

perse packings in the quasi-2D geometry. At low values of
Γ all of the system moves coherently with the center of
mass (c.m.) along the x axis, i.e., the free direction allowed
byPBC,whosemotion in timeXc:m:ðtÞ ¼ M−1

tot
P

i mixiðtÞ is
shown in Fig. 2(a). We note that, even with the same Γ, a
different random packing can lead to a stable drift with very
different magnitudes or to an intermittent drift. In Fig. 2(b),
considering the x component of the c.m.’s velocity Vc:m:

x ðtÞ,
we also verify that short time properties as the time variance
σ2ðVc:m:

x Þ are fully determined by the driving parameters
(small error bars), while the slow cooperative dynamics
(characterized by its time average hVc:m:

x i) sensibly depends
on the packing configuration (large error bars). Nevertheless,
raising Γ up to values for which the system fluidizes
(typically Γ > 10), the c.m. performs Brownian-like trajec-
tories and hVc:m:

x i vanishes (see the Supplemental Material,
Video 1 [20]). We recall that a dense vibrofluidized granular

system has several timescales, the smallest associated to fast
vibrational motion, the largest associated to slow rearrange-
ments of the global contact network.Whatwe observe here is
a rapid divergence of the largest timescale when Γ is reduced
below ∼3 ÷ 10. The value of hVc:m:

x i, therefore, does not
depend crucially on the trajectory’s duration, provided it is
longer than the small timescales, e.g., ≫ 10−1 s.
Effect of symmetries.—The observation that average

motion is erased by fast particle rearrangements (fluidiza-
tion) is a hint of its correlation with the system’s spatial
configuration. For this reason we study hVc:m:

x i for ordered
packings with defects [Fig. 2(c)]. Net drifts are never
observed in the ND and SD cases, whereas for all
asymmetric configurations they are. Moreover, when the
defect configuration is mirrored with respect to the z axis,
e.g., BL → BR or TR → TL, etc., at a given value of Γ,
hVc:m:

x i changes its sign remaining with comparable mag-
nitude. A reflection of the configuration with respect to x
always changes the magnitude of the drift, but the sign
reverses just for a few values of Γ. Remarkably, a variation
of Γ keeping the same layout of defects brings multiple
inversions of sgnðhVc:m:

x iÞ in the region 0.8 ≤ Γ ≤ 1.05,

FIG. 2. (a) Xc:m:ðtÞ (symbols) and xiðtÞ for all the grains i in the
system (lines) for quasi-2D random packings. The grains move
coherently with the c.m. Simulations with the same Γ refer to
different random realizations. (b) Comparison between σ2ðVc:m:

x Þ
and hVc:m:

x i, obtained averaging over three independent random
realizations. (c) Time averaged velocity of center of mass as a
function of Γ for different monodispersed packings. Each point is
mediated over five independent realizations of the dynamics.
Here, differently from random packings, hVc:m:

x i vanishes for
Γ ≃ 3 because moderate vibrations destroy the asymmetric
configuration of defects. (d) enlargement of low Γs to highlight
the sign changes with fixed structure.
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shown enlarged in Fig. 2(d). In summary, (i) defect asym-
metry is needed to observe nonzeromeanvelocity of the c.m.,
(ii) reflectionwith respect to z inverts the direction ofmotion,
and (iii) the defect configuration alone does not define the
verse of the motion; the driving parameter determines it too
(Supplemental Material, Video 2 [20]).
Sensitivity to small configuration changes.—Given the

observed complicated entanglement of external parameters
and drifts, we now focus on fluctuations of the drift during
the same trajectory. Such fluctuations are more evident and
frequent in random packings. Figures 3(a) and 3(b)
compare the coordination number of the contact network
ZðtÞwith the instantaneous drift Vc:m:

x ðtÞ: they often change
together. Such changes do not correspond to a significant
rearrangement of particles [changes of ZðtÞ can be smaller
than 1%], confirming that the collective motion is sensible
to small deformations of the contact network. Collective
drifts are also observed in the 3D realistic setups (see
Refs. [15,16] and the Supplemental Material [20]), and
similar correlations are present here too [Figs. 3(c)–3(d)].
Obviously, the coordination number is not directly related
to the packing asymmetry. A more appropriate quantity
eluded our analysis, perhaps because of the observed
challenging scenario: on one hand, the drift may signifi-
cantly change at fixed Γ for weak deformations of the
contact network (as seen for random packings) and, on the

other hand, it can change direction by varying the driving
parameters with a fixed structure (as occurs in the ordered
packings with defects). Analogous difficulties have been
discussed recently for glassy systems [34–39]. In our
Letter, the athermal nature of the system (that needs a
mechanical driving to reach a stationary state) is a peculiar
feature that has no counterpart in thermal glasses [40].
Bulk asymmetries originate a ratchet effect.—We now

look for observables that mediate between bulk structure
and dynamics. The profiles, along x of the mean normal
pressure and themean compenetration between the plate and
the bottom particles are shown in Fig. 3(e), for an ordered
packing with defects. Each profile is asymmetric and
properly inverted under a z reflection: defects in the bulk
actually influence the way in which the boundaries interact
with the source of energy. This may be expected, since both
normal pressure and compenetration affect the tangential
component of the force exerted by the vibrating plate (see the
Supplemental Material [20]); what is remarkable in our
opinion is its global dynamical consequence. Recent analyti-
cal results [41] for an idealizedmodel of vibrofluidized dense
granular material suggest long-range spatial correlations that
may justify the global influence of defects. A deeper insight is
provided by the external tangential force provided by theplate
FT
x (x component), which directly affects the c.m.: _Vc:m:

x ¼
M−1

totFT
x ðrxj; rzj; vxj;ωyjÞ where the index j refers to the

FIG. 3. (a)–(d) Comparison between the time evolution of the c.m. velocity and the mean coordination number of the contact network
ZðtÞ ¼ N−1 P

ij ΘðRi þ Rj þ δ − jrijjÞ where 0 < δ ≪ Ri þ Rj allows one to detect the nearest neighbor not in contact due to
vibrations. Trajectories are smoothed with a running average. (a)–(b) random packings [cases with upside-down triangles and circles in
Fig. 2(a)]. (c) 3D cubic setup. Here Vc:m:

xy is two-dimensional so we plot both the modulus and the orientation θc:m:
xy . (d) 3D cylindrical

geometry. The collective motion is a rotation around the central axis so Ωc ¼ N−1 P
i jrij−2ðri × viÞz. (e) Time averaged modulus of the

normal force and compenetration between the plate and the bottom particles for two z-reflected configurations of defects. Site four is
under the double defect [see Figs. 1(b)–1(c)]. (f)–(h) Scatter plots with bins of the total x-tangential force modulus exerted by the plate vs
the total velocity of the bottom particles for ordered packings with defects (f) and random packings (g)–(h) shaken at Γ ¼ 0.7. In the
latter, γ� ¼ jhFT

x jvx≷0ij=hvxjvx≷0i linearly interpolate the data clouds.
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bottom particles (for ordered packings j ∈ ½1; 9�). We char-
acterize the dependence of FT

x upon vx ¼
P

j vxj by the
scatter plot in Fig. 3(f) for two z-reflected ordered configu-
rationswith defects. Such dependence is typical of a frictional
force, but quite surprisingly, its intensity depends on the sign
of the velocity. Moreover, also this frictional asymmetry is
inverted under the z reflection of packing. Comparing with
Fig. 2(d) clarifies that the drift occurs toward lower friction.
Figures 3(g) and 3(h) show that the same kind of bias is more
pronounced for random packings; indeed, jhVc:m:

x ij is far
larger. All thismakes clear that structural disorder and defects
introduce an asymmetric interactionwith the plate. The role of
the ωyj is discussed in the Supplemental Material [20].
Simulations with a higher acquisition rate allow one to

study the grain trajectories on timescales shorter than a
driving period 1=f. In Fig. 4(a), we show FcðtÞ ¼ μjFN j −
jFT

x j where μ is the dynamic friction coefficient. As
explained in the Supplemental Material [20], this difference
is zero if the grain and the plate surfaces slide on each other.
We observe roughly periodic cycles (with the periodicity of
the driving plate), with a part of each period where Fc ∼ 0.
In Fig. 4(b), we compare the trajectory of the c.m. with the
total horizontal displacement accumulated by the bottom
layer considering just the sliding instants and all the
remaining ones. From this comparison we conclude that
the main contribution to the irreversible motion occurs
when Fc ∼ 0. From Fig. 4(c) we also understand how the
mean horizontal motion originated at the bottom of the
system is transferred to the top; there we plot the difference
ΔX between the mean x coordinate of the lowest layer and
of the one just above it, noting a clear stick-slip dynamics.
We have verified that, as suggested by the marked points in
the graph, this distance slowly increases during the sliding
of the bottom layer and then suddenly decreases when the
sliding condition ceases.
The provided analysis suggests the interpretation of the

phenomenon under study as a ratchet effect originated from
structural asymmetries [42,43]. To further support this, a
variation of the well-known periodically rocked ratchet [44]
is proposed in the Supplemental Material [20]. Inspired by
the stick-slip dynamics between the layers of the granular
packing we have replaced the asymmetric periodic poten-
tial with a confining but slipping one. Our model repro-
duces many features of the phenomenon under study (see
the Supplemental Material [20]).
System’s size effects.—The results for 2D packings are

obtained in a relatively small system in order to establish a
direct connection with former experiments [17]. The
presence of analogous behavior also in larger and more
realistic 3D systems signals the generality of the phenome-
non. Nevertheless, a study of the system’s size effects in the
simplified geometry is nontrivial since the origin of the drift
and the resistance against it can depend both on bulk
volume (through the concentration of defects) and external
surfaces (through friction and energy input). We performed
simulations of ordered packings with defects where the

original “module” of N ∼ 60 grains is replicated N times
along both the x or the z axis. Each replica can be with or
without defects so that a concentration of defects c can be
defined as the number of asymmetric modules over N . For
the horizontal size scaling we considered three different
values of defect concentration c ¼ f1=N ; 0.5; 1g. From
Fig. 4(d) we see that increasing the system size along xwith
a vanishing concentration of defects (c ¼ 1=N ) leads to the
weakening of the drift. For finite defect concentration
instead, we observe a nonzero-asymptotic hVc:m:

x i whose
magnitude depends on c. Regarding the vertical size
scaling, we note that the drift is suppressed for large N .
This fact can be reasonably explained considering that, in
absence of a lateral wall in the x direction, the pressure at
the base of the system increases with its height reducing the
global mobility. We have accordingly verified that for
packings higher thanN ¼ 5, the sliding condition μjFN j ∼
jFT

x j is never satisfied. The scenario for large random
packings is different: the global asymmetry of many

FIG. 4. (a) Time evolution of Fc ¼ μjFN j − jFT
x j. Diamonds

mark the instants for which Fc ∼ 0 corresponding to the sliding
condition for the tangential force between the plate and the
bottom grains. (b) Trajectory of the Xc:m: compared with
the horizontal displacement of the bottom layer accumulated
in the sliding instants (ΔXb

sl) and in all the other ones (ΔXb
ot).

(c) Stick slip in the difference of the mean x coordinates of the
two lowest horizontal layers in a granular simulation. Diamonds
refer to sliding instants. These three panels are obtained with BL
and Γ ¼ 1.25. (d) Mean velocity of the c.m. as a function of the
horizontal (triangles) and vertical (diamonds) size of the system
for different values of the defect concentration. The vertical size
effect is shown for c ¼ 1, but we verified that its relevant
behavior does not depend on c > 0. (e) Scaling of hVc:m:

x i and
the diffusivity of the fluctuation around the drift D (see the
Supplemental Material [20]) as a function of the horizontal
system size for random packings. Each point is obtained
averaging over ten independent realizations of the packing; error
bars are standard deviations.
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disordered granular patches each pushing the whole system
in a different direction is expected to decrease with their
number. Indeed we observe a reduction of the drift as 1=

ffiffiffiffiffi
N

p
when the system size is scaled horizontally [Fig. 4(e)].
Interestingly, also the diffusivity of the fluctuations around
the average motion decreases with N . We define such a
quantity as the diffusion coefficientD of the fast component
of the c.m. dynamics that can be measured from the power
spectral density of Vc:m:

x ðtÞ as shown in the Supplemental
Material [20]. For Γ > 1 it follows a scalingD ∼ 1=N while
for Γ < 1 it seems to reach a minimum at large N . In the
former case the quantity D=hVc:m:

x i2 that is the typical time
after which the drift (even very small) becomes visible is
independent fromN . This observation confirms that the drift
is more relevant than a finite-size effect and poses an
interesting challenge for the recently discovered thermody-
namic uncertainty relations [45,46].
Conclusion.—We have presented a numerical study of a

realistic granular contact model with several ideal experi-
ments to put in evidence the existence of a random-to-direct
energy conversion based upon the concurrent breaking of
time and space symmetries. As in many ratchetlike phe-
nomena, the same geometry may lead to opposite drifts,
depending on energy injection. Inspired by the interplay of
friction and structure that emerged in the numerical
analysis, we introduce a novel ratchet model with asym-
metric interactions and stick slips. The drifts discovered
and explained underlie several phenomena observed
recently in shaken granular media [14–17] and are expected
to be a general feature of soft matter systems, such as active
matter, crowd dynamics, etc.
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