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The Berry phase plays an important role in determining many physical properties of quantum systems.
However, tuning the energy spectrum of a quantum system via Berry phase is comparatively rare because
the Berry phase is usually a fixed constant. Here, we report the realization of an unusual valley-polarized
energy spectra via continuously tunable Berry phases in Bernal-stacked bilayer graphene quantum dots. In
our experiment, the Berry phase of electron orbital states is continuously tuned from about π to 2π by
perpendicular magnetic fields. When the Berry phase equals π or 2π, the electron states in the two
inequivalent valleys are energetically degenerate. By altering the Berry phase to noninteger multiples of π,
large and continuously tunable valley-polarized energy spectra are realized. Our result reveals the Berry
phase’s essential role in valleytronics and the observed valley splitting, on the order of 10 meV at a
magnetic field of 1 T, is about 100 times larger than Zeeman splitting for spin, shedding light on graphene-
based valleytronics.
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In two-dimensional honeycomb lattice systems with
broken spatial inversion symmetry, the Berry curvature
in two inequivalent valleys has opposite signs, which
enables the control of valley degrees of freedom [1–10].
Among various material candidates for valleytronics,
gapped Bernal-stacked bilayer graphene (BLG) showing
great promise in terms of tunability of the valley current and
valley splitting [6–19] is one of the most studied systems.
The opposite Berry curvature and the associated magneti-
zation of electron states in the two valleys of the gapped
BLG lead to a large linear magnetic field valley splitting,
which has been demonstrated recently by single-carrier
measurements (in the Coulomb blockade regime) in BLG-
based quantum dot (QD) devices [11–15,18]. Besides the
Berry-curvature effects, it was also predicted to realize
valley-polarized energy spectra in BLG QDs when the
Berry phase is tuned to noninteger multiples of π [19]. Yet,
in most cases studied to date, the Berry phase in graphene
systems equals the integer multiples of π [20–25], and
altering the Berry phase to noninteger multiples of π has
remained elusive. Therefore, a direct observation of the
Berry-phase-induced valley-polarized energy spectrum is
still lacking [26].
In this Letter, unusual valley-polarized energy spectra are

realized in the BLG QDs via continuously tuning the Berry
phase of electron orbital states from about π to 2π. In our
experiment, a scanning tunneling microscope (STM) tip is

used to approach the BLG to introduce a movable confining
potential, i.e., a QD, in the BLG beneath the tip
[4,5,13,25,27]. By applying a perpendicular magnetic field,
the Berry phase of bound states in the BLG QD is
continuously tuned from about π to 2π. When the Berry
phase becomes noninteger multiples of π, valley-polarized
energy spectra with tunable valley splitting are directly
observed.
The Berry phase is the flux of the Berry curvature

integrated over the area circled by the closed path in
momentum space. In graphene QD, a magnetic field
enables fine control of the trajectories and hence the
Berry phase for individual confined states [18,25,28], as
summarized in Fig. 1 (see Supplemental Material for details
[29]). Therefore, graphene QD offers an ideal platform to
study the effect of the Berry phase on the energy spectrum.
The results obtained in monolayer graphene QD and the
BLG QD are quite different. For monolayer graphene,
the Berry phase jumps from 0 to π at a critical value of the
magnetic field because the Berry curvature is only nonzero
at the Dirac point: The Berry phase is zero (π) when their
corresponding momentum-space loop does not (does)
enclose the Dirac point [Figs. 1(b) and 1(c)]. The π shift
of the Berry phase will suddenly lift the degeneracy of the
quasibound states with opposite angular momenta �m
[25,39,40]. For the BLG, the Berry curvature is ring shaped
in momentum space [Fig. 1(e)]. Then, the area circled by
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the closed path and, simultaneously, the Berry phase, can
be continuously tuned by the magnetic field [Fig. 1(f)].
When the Berry phase becomes noninteger multiples of π,
the energy of the bound states for the two valleys becomes
different according to the Einstein-Brillouin-Keller (EBK)
quantization rule [19]. Then, an unusual valley-polarized
energy spectrum can be obtained.
Our experiments were carried out on decoupled Bernal-

stacked BLG on graphite [9,23,41,42] by using a high-
magnetic-field STM at T ¼ 4.2 K [29]. The decoupled
Bernal-stacked BLG is identified by both the STM image
and scanning tunneling spectroscopy (STS) spectra
(Fig. 2). The atomic-resolution STM image exhibits a
triangular lattice [Fig. 2(a)] arising from the A=B atoms’
asymmetry in the Bernal-stacked BLG. The high-magnetic-
field STS spectra show well-defined Landau quantization
of massive Dirac fermions [Figs. 2(b) and 2(c)], which
demonstrates explicitly that the studied system is decoupled
Bernal-stacked BLG [9,23,41,42] (see Supplemental
Material Fig. S1 [29]). In zero magnetic field, the tunneling
spectrum exhibits a pronounced peak at the edge of the
conduction band [Figs. 2(b), 2(f), and Fig. S2 [29]],
indicating emergence of a flat band in the Bernal-stacked
BLG. Such a feature was also observed in similar systems
in the literature [41,42]; however, it has been ignored in
discussions so far. Recently, angle-resolved photoemission
measurements for Bernal-stacked BLG on SiC demon-
strated the formation of the flat band in the BLG due to the
interaction of the substrate [43]. According to our exper-
imental result and calculation, the graphite substrate

introduces interlayer asymmetry (hence, the gap in the
BLG), leading to the flat band. The band structure is
extremely flat, showing a 0.084-meV dispersion, around
the conduction band edge [Figs. 2(d)–2(f)]. Therefore, the
full width at half maximum of the flat band in the BLG
measured in our experiment is comparable to that in magic-
angle twisted bilayer graphene (MATBG) (also measured
by using STM) [44–49], and it is reasonable to observe
correlated phases when it is partially filled [50].
To introduce the BLG QDs in our study, we used a STM

tip as a top gate to generate band bending of the BLG
beneath the tip [4,5,13,25,27]. In the experiment, the
distance between the tip and the sample is shortened by
about 0.5 nm (see Fig. S3 in the Supplemental Material for
more data [29]) by increasing the tunneling current with a
fixed voltage bias, as shown in Fig. 3. For short tip-sample
distance, the signal of the flat band is further enhanced in the
tunneling spectra [Fig. 3(a); here, gðVb; r ¼ 0; B ¼ 0Þ ¼
dI=dVb reflects the local density of states (LDOS) in the
center of the graphene resonator at B ¼ 0 T as a function of
Vb]. Besides that, the work function difference between the
STM tip and the BLG leads to an effective electric field
acting on the BLG and results in the confining potential
[Fig. 1(d)]. Then, several almost equally spaced resonances,
which are attributed to the confined bound states in the BLG
QD, are observed in the STS spectra [Fig. 3(b)]. In the center
of the BLG QD, the LDOS of the bound states are mainly
contributed by the angular momentum M ¼ �1. The level
spacing of the confined bound states does not change very
much with the tip-sample distance, as shown in Fig. 3(b),

FIG. 1. (a)–(c) Jump of the Berry phase in monolayer graphene QDs. (d)–(f) Continuously tunable Berry phase in Bernal-stacked BLG
QDs. (a),(d) Sketches of monolayer graphene QD and BLG QD, respectively. (b),(e) Schematic charge trajectories in momentum space
of monolayer graphene QD and BLG QD, respectively. The orange solid and black dashed lines in (b) represent trajectories in the
magnetic fields above and below the BC, respectively. The orange solid and black dashed lines in (e) represent trajectories in the
magnetic fields of 10T and 0T, respectively. (c),(f) Berry phase as a function of the magnetic fields B in monolayer graphene QD and
BLG QD, respectively.
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which indicates that the decrease of the tip height does not
change the potential profile but increases the signal-to-noise
ratio in the tunneling spectra.
To explore the Berry-phase-induced valley-polarized

energy spectra in the BLG QD, we carried out STS
measurements in magnetic fields with a small interval of
the magnetic field ΔB ¼ 0.05 T, as shown in Fig. 4(a) (left
panel). With increasing magnetic fields, a notable splitting
of the bound states can be observed. At 1 T, the splitting is
about 10 meV, which is about 100 times larger than that of
Zeeman splitting for spin. When the magnetic field
increases to about 3 T, two adjacent split states merge
into a new state. By further increasing the magnetic field,
the bound states condensed into Landau levels of massive
Dirac fermions (see Figs. S4 and S5 in the Supplemental
Material [29]), which helps us to completely remove the
charging effect as the origin of the peaks in the spectra
[13,51–53]. The above feature reminds us of the Berry-
phase-induced valley-polarized energy spectra in the BLG
QDs [19]. According to the semiclassical EBK quantization
rule [19,28], one has

I
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Πrdr ¼ 2π
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nþ 1

2

�
þ γ ð1Þ

for the valley K and
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�
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2

�
− γ ð2Þ

for the valley K0 with the integer n. Here the Berry phases
for the valleys K and K0 are opposite. The left sides of
Eqs. (1) and (2) are dimensionless. Since Πr (the radial
momentum) and the Berry phase γ are functions of energy
E, Eqs. (1) and (2) determine the behaviors of the valley-
related bound states in the QDs (see Fig. S6 and
Supplemental Material for details of the calculation
[29]). When γ ¼ 0, π, or 2π, the bound states for the
valleys K and K0 are degenerate. In other situations, the
bound states for the valleys K and K0 are split. Therefore,
when γ is continuously tuned from π to 2π, the bound states
will experience the unusual degenerate-splitting-degenerate
process of the valley degrees of freedom, as directly
observed in experiment [Fig. 4(a) (left panel)]. This is
essentially different from the monolayer graphene, in which
γ is 0 or π, and the bound states in the two valleys are
always degenerate.
To further understand the above result, we calculated the

LDOS for the BLG QD fully based on the quantum
mechanics. For simplicity, we model the BLG QD by
the Hamiltonian H̃ξ ¼ Hξ þ UðrÞ, whereUðrÞ ¼ κr2 is the
parabolic potential with the strength κ (see Supplemental
Material for the rationality of the choice [29]). Hξ is the
4 × 4 Hamiltonian for the ungated BLG

FIG. 2. (a) A 5 × 5 nm2 atomic-resolved STM image (Vsample ¼ 800 mV, I ¼ 200 pA) of the Bernal-stacked BLG. The triangular
graphene lattices of the Bernal-stacked BLG are overlaid onto the image. (b) Landau level spectra of the BLG for various magnetic
fields. Curves are shifted vertically for clarity. The Landau level peak indices are marked, and the gap is labeled by shadows. (c) The
Landau level energies for different magnetic fields obtained from (b) against �½nðn − 1Þ�1=2B. (d) Calculated low-energy dispersions of
the Bernal-stacked BLG. (e) An enlarged image of the calculated flat band dispersion in (d). (f) Experimental and calculated DOS of the
top layer as a function of energy.
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Hξ ¼ vτ0ðξΠxσx þ ΠyσyÞ þ
t⊥ðτxσx þ τyσyÞ

2

þ Δ1ðτ0 þ τzÞσ0
2

þ Δ2ðτ0 − τzÞσ0
2

ð3Þ

in the layer ⊗ sublattice space, with the interlayer hopping
energy t⊥, the potentials Δ1 and Δ2 of the top and bottom
layers, the valley index ξ ¼ �1, the Fermi velocity v, the
Pauli matrices σ ¼ ðσx; σyÞ and τ ¼ ðτx; τyÞ in the sub-
lattice space and the layer space, and the momentum Π ¼
ðΠx;ΠyÞ ¼ ð−iℏ∂x − eAx;−iℏ∂y − eAyÞ with the vector
potential A ¼ ðAx; AyÞ ¼ Bð−y; x; 0Þ=2. In the BLG QD
with the rotational symmetry, the LDOS at r ¼ r0 can be
expressed as DðEÞ ¼ P

M DMðEÞ with DMðEÞ being the
LDOS contributed by the angular momentum M state

[19,27]. In our experiment, the on-center STM measure-
ment mainly reflects the LDOS of the top layer of the BLG.
Therefore, we present the numerical result of top-layer
LDOS at the center of the BLG QD, as shown in Fig. 4(a)
(right panel). The contributions from −10 ≤ M ≤ 10 are
considered. To further compare the experimental data with
the theoretical result, several line cuts at different magnetic
fields of Fig. 4(a) are plotted in Figs. 4(b) and 4(c). The
numerical calculation reproduces the main features of the
experimental result, and the continuously tunable Berry
phase is responsible for the degenerate-splitting-degenerate
features of the LDOS. To explicitly show the effects of the
Berry phase, we calculated the LDOS of the BLG QD with
r0 ¼ 0 for M ¼ 0, �1 in Fig. S7 of the Supplemental
Material [29]. The bound states of the two valleys are
degenerate for the negative magnetic field with large
enough absolute value due to γ ¼ 0. When the field is
increased, the bound states of the two valleys start to split
because of the finite value obtained by the Berry phase.
When the Berry phase is increased to π, the bound states
become degenerate again, and the states of the two valleys
cross each other. As the field is continuously raised, the
crossing lines of the valley-related states split again because
of γ > π. When the Berry phase achieves the value of 2π for
larger enough positive magnetic fields, the two valleys
become degenerate again. Finally, the states of the two
valleys are recombined into degenerate Landau levels when
the magnetic length is smaller than the effective radium of
the QD. For other values of M, the LDOS show similar
features. The switching processes of degeneracy splitting
for states embodied in the LDOS are consistent with the
behaviors of the continuously changed Berry phase.
However, there is an obvious discrepancy between the
experimental data and the theoretical result: There are two
magnetic-field-independent states with a large and almost
constant energy separation away from the lowest bound

FIG. 3. (a) A color plot of the dI=dV spectra measured at
different tip-sample distances Ztip. The tip height decreases by
increasing the tunneling current I with a fixed voltage bias. When
the tip is approaching the BLG (as the tunneling current
increases), the signals of the flat bands and the bound states
become obvious. (b) Differential of the tunneling conductance
map in (a). The feature of the bound states is more obvious. The
sudden jump at about I ≈ 600 pA may arise from the slight
variation of the doping in the BLG induced by the STM tip.

FIG. 4. (a) Experimental (left panel) and calculated (right panel) differential conductance maps versus magnetic fields B in the center
of the BLG QD. Here, calculated differential conductance is proportional to the differential LDOS −∂2DðEÞ=∂E2 of the top layer. The
red (black) dashed lines guide the trend of bound states for the valley K (K0). (b),(c) Four representative line cuts in experiment and
theory at different magnetic fields in (a). The red lines guide the trend of the levels for the valleyK. The black lines guide the trend of the
levels for the valley K0.
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state [Fig. 4(a) (left panel)], which is not reproduced in
theory [Fig. 4(a) (right panel)]. To explore the possible
origin of the observed phenomenon, we calculated the
effects of different potential profiles on the evolution of the
bound states as a function of the magnetic fields, as
summarized in Figs. S8 and S9 in the Supplemental
Material [29]. Our calculations indicate that the profile
of the potential away from the center r ¼ 0 has almost no
influence on the LDOS at r ¼ 0, and all bound states
evolve continuously through the degenerate-splitting-
degenerate process when the Berry phase changes contin-
uously from about π to 2π. The probable reason for the two
magnetic-field-independent states is that they are the bound
states with the same n (n ¼ 1) for the valleysK andK0. The
valley degenerate is lifted by the strong electron-electron
interaction even in zero magnetic field, as observed in the
flat bands of the MATBG [45–48,54]. As a result, these two
states do not exhibit the continuous valley splitting as the
magnetic field increasing from zero. Our theoretical sim-
ulation considering the electron-electron interaction really
can well reproduce this unexpected phenomenon (Fig. S10
in the Supplemental Material [29]), revealing the two
magnetic-field-independent states as the valley-polarized
states.
In summary, large and tunable valley-polarized energy

spectra are realized in the BLGQDs by continuously tuning
the Berry phase. Our results demonstrate the close relation-
ship between the valley polarization and the noninteger
multiples of π of the Berry phase, which reveals the Berry
phase’s essential role in valleytronics. The observed large
valley splitting at moderate magnetic fields sheds light on
graphene-based valleytronics.
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