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Using a cluster extension of the dynamical mean-field theory, we show that strongly correlated metals
subject to Hund’s physics exhibit significant electronic structure modulations above magnetic transition
temperatures. In particular, in a ferromagnet having a large local moment due to Hund’s coupling (Hund’s
ferromagnet), the Fermi surface expands even above the Curie temperature (TC) as if a spin polarization
occurred. Behind this phenomenon, effective “Hund’s physics” works in momentum space, originating
from ferromagnetic fluctuations in the strong-coupling regime. The resulting significantly momentum-
dependent (spatially nonlocal) electron correlations induce an electronic structure reconstruction involving
a Fermi surface volume change and a redistribution of the momentum-space occupation. Our finding will
give a deeper insight into the physics of Hund’s ferromagnets above TC.
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Introduction.—The concept of the Fermi liquid offers a
firm basis to understand the behavior of interacting
electrons in metals. However, properties of strongly corre-
lated metals often deviate from the Fermi-liquid behavior.
A famous example is a pseudogap or strange metal
behavior seen in doped cuprates [1]. Since various fasci-
nating phenomena such as superconductivity and magnet-
ism emerge from these states, understanding correlation
effects beyond the Fermi-liquid theory poses a fundamental
issue in condensed matter physics. Although the origin of
the pseudogap in the cuprates is still controversial, one of
the widely discussed scenarios is an antiferromagnetic
(AFM)-fluctuation-induced mechanism [2–5]: Even with-
out symmetry breaking, the AFM fluctuation induces a
significant momentum-dependent self-energy, giving rise
to the pseudogaplike behavior.
Recently, a ferromagnetic (FM) quantum critical point

and associated strange metal behavior were observed in a
heavy-fermion material CeRh6Ge4 [6]. The effect of a FM
quantum critical point was also studied for a tailored
Hamiltonian in which itinerant fermions couple to a critical
FM bosonic mode of the transverse-field Ising model, and
non-Fermi-liquid behavior was reported [7,8]. Unusual
spectral properties involving a splitting of the spectrum in
the vicinity of a FM instability were reported in Refs. [9,10].
However, in comparison to the metallic state subject to

AFM fluctuations, our understanding of that under FM
fluctuations is still scarce. Of particular interest is a strong-
coupling regime, where the local moment is formed well
above the Curie temperature (TC) and affects the metallic
behavior. This may result in a non-Fermi-liquid state
distinct from the strong-coupling AFM one, where the
Mott physics renders the local-moment formation above the
Néel temperature.

Such a strong-coupling FM regime is expected in the
multiorbital Hubbard model, where Hund’s coupling sta-
bilizes a large localmoment. This large localmoment indeed
gives rise to strong local correlations [11–13], as revealed by
the previous studies based on the dynamical mean-field
theory (DMFT) [14,15]. Beyond the DMFT, Hund’s cou-
pling also induces significant nonlocal correlations [16]
while its effect on spectral properties remains unexplored.
In this Letter, we study the two-orbital Hubbard model

with the cellular dynamical mean-field theory (cDMFT)
[17,18], a cluster extension [19] of the DMFT, revealing
how the Hund-induced nonlocal spin correlations influence
the single-particle properties. The model exhibits two
distinct regimes, one governed by the AFM fluctuation
and the other governed by the FM fluctuation, depending
on the electron filling. We first show that the different types
of spin correlations bring about different momentum
dependencies of the electron self-energy, reconstructing
the Fermi surface (FS) differently.
Then, focusing on the FM-fluctuation regime, we find a

FS-volume expansion above TC: while it is natural to see a
volume expansion of the majority-spin FS in the FM long-
range-ordered metal below TC, we find a similar spectrum
even above TC in the strong-coupling regime with the large
preformed local moment. We discuss the emergence of
“Hund’s physics” in momentum space behind this unusual
behavior.
Model and methods.—We study a degenerate two-orbital

Hubbard model on a square lattice. The interaction part of
the Hamiltonian reads
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where cσ†li (cσli) creates (annihilates) an lth-orbital electron
(l ¼ 1, 2) with spin σ at site i and nσli ≡ ĉσ†li ĉ

σ
li. The intra-

and interorbital Coulomb interactions (U and U0), and
Hund’s coupling (J) satisfy U0 ¼ U − 2J to keep the
Hamiltonian rotationally invariant in orbital and spin
spaces. We consider the noninteracting dispersion of εk ¼
−2tðcos kx þ cos kyÞ − 4t0 cos kx cos ky for each orbital
(t and t0 are nearest-neighbor (NN) and next-nearest-
neighbor (NNN) hoppings, respectively). We set t ¼ 1 as
the energy unit and study the case of t0=t ¼ −0.2 and
J=U ¼ 1=4. We consider the paramagnetic and paraorbital
phase. Then, the Green’s function is given by GkðiωνÞ ¼
½iων þ μ − εk − ΣkðiωνÞ�−1 with the Matsubara frequency
ων ¼ ð2νþ 1ÞπT (T ¼ 1=β is the temperature), the chemi-
cal potential μ, and the self-energy ΣkðiωνÞ. Hereafter, we
omit spin and orbital indices for simplicity.
Within the cDMFT, we map the lattice model onto a

2 × 2 cluster impurity problem under a self-consistent
condition. Solving the latter model numerically, we incor-
porate short-range correlations within the cluster size. We
use a continuous-time quantum Monte Carlo method with
an interaction expansion [20,21] developed in Ref. [22] to
solve the impurity problem. It is computationally demand-
ing to solve a cluster multiorbital impurity problem because
of the large expansion order (∼1000) and the sign problem.
We have implemented the submatrix update [23] to handle
the large expansion order and the double-vertex update [22]
to mitigate the sign problem. Even with these techniques, at
a temperature of T ≲W=100 (W: bandwidth), the average
sign becomes less than 0.01 in the worst case. When
considering the expansion order and the sign problem, the
2 × 2 cluster is the maximum cluster size that we can
handle within a realistic computational time [24].
Results.—We study two different fillings n ¼ 1.9 (5%

hole doping from the half-filling) and n ¼ 1.5 (25% hole
doping). The temperature is set to T ¼ 0.06 (0.08 [26]) for
n ¼ 1.9 (1.5). The former filling favors the AFM correla-
tion [Fig. 1(a)], whereas the latter favors the FM correlation
[Fig. 1(b)] at large interaction parameters due to the double
exchange mechanism. The appearance of these magnetic
correlations is qualitatively similar to the single-site DMFT
results [27–30]. Under strong Hund’s coupling, the para-
magnetic solution of the DMFT shows a spin-freezing
behavior [11], which is also seen in Figs. 1(a) and 1(b) for
the on-site correlation function: The slow decay against the
imaginary time τ implies a frozen (ω ¼ 0) component. In
addition, our cDMFT results show a freezing behavior also
in the nonlocal (NN and NNN) spin-spin correlations. As
the local unscreened frozen moment induces local electron
correlations giving bad metallic behavior [11], the frozen
nonlocal spin correlation might induce exotic nonlocal
electron correlations, which are the main subject of this
study.
Indeed, at both fillings, the self-energy shows bad

metallic behavior with a strong momentum dependence

[Figs. 1(c) and 1(d)]. Interestingly, however, the momen-
tum dependence differs qualitatively between the two
fillings.
First, for n ¼ 1.9, due to the strong nonlocal AFM

correlation, the self-energy becomes large around k ¼
ðπ; πÞ [Fig. 1(c)]. Although the 2 × 2 cDMFT gives a coarse
momentum resolution of (0, 0), ðπ; 0Þ, ð0; πÞ, and ðπ; πÞ, the
fully momentum-dependent self-energy can be inferred
through the periodization scheme [18]. Here, we use the
cumulant periodization [31], which gives a fast convergence
of the periodized self-energy against the cluster size: For the
single-orbital model, the results of the 2 × 2 cluster quali-
tatively agree with the converged results at a temperature
similar to that used in this study [32].
The periodized self-energy is shown in Fig. 2(a). It

shows qualitatively similar behavior to that of the single-
orbital model (Fig. S1(a) in the Supplemental Material
(SM) [33]) at the same doping ratio (5%). However, in the
two-orbital model, strong momentum dependence develops
at smaller interaction values than those in the single-orbital
model. This confirms a significant role of Hund’s coupling
in inducing strong electron correlations through forming a
large local moment.
As a result of the strongly momentum-dependent self-

energy, the FS is considerably modified. Figure 2(b) shows
this by approximating the spectral weight at the Fermi level
by −βGkðτ ¼ β=2Þ. The FS shows hot and cold spots,
and the scattering rate shows a strong angle dependence.
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FIG. 1. Real-space spin-spin correlation function and imagi-
nary part of the self-energy at the momenta (0, 0), ðπ; 0Þ [or
equivalently ð0; πÞ], and ðπ; πÞ. (a),(c) Results for n ¼ 1.9 and
U ¼ 4J ¼ 6. (b),(d) Results for n ¼ 1.5 and U ¼ 4J ¼ 12.
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This feature is qualitatively similar to that of the single-
orbital model (Fig. S1(b) in SM), as well as to angle-
resolved photoemission spectroscopy results for the
cuprates [1,36]. The results suggest that an exotic pseu-
dogaplike feature might also be seen in the multiorbital
systems with strong AFM correlations.
Next, we turn to the 25% hole-doping (n ¼ 1.5) case. In

the single-orbital model, the filling corresponds to the
overdoped regime of cuprates, where the Fermi-liquid
behavior is observed. However, in the two-orbital model,
we find a strong FM spin correlation due to Hund’s
coupling, where the local moment is formed well above
TC. This poses an intriguing issue: How does the strong FM
correlation affect the single-particle quantities? As we see
in Fig. 1(d), in stark contrast with the AFM case, the self-
energy becomes largest at around k ¼ ð0; 0Þ. Then, the FS
shape will be modulated differently.
Using the periodization method again, we investigate

the change of the FS between U ¼ 8 and 12 [Figs. 3(a)
and 3(b)]. At U ¼ 8, the momentum dependence of the
self-energy is not significant [red curve in Fig. 3(c)]. The
nonlocal spin correlation is not large either (Fig. S4(a) in
the SM). Nevertheless, the spin-freezing behavior is seen

for the local spin correlation. This makes the quasiparticle
lifetime short and broadens the low-energy spectral weight
[Fig. 3(a)]. These features are consistent with the Hund’s
metal behavior investigated intensively with the single-site
DMFT [13].
However, as U increases, the nonlocal FM correlation

grows. Simultaneously, the self-energy acquires a signifi-
cant momentum dependence [Fig. 3(c)]. Figure 3(b) shows
the FS with the strongly momentum-dependent self-energy
at U ¼ 12. In contrast to the n ¼ 1.9 case, we do not see a
clear angle dependence of the scattering rate on the FS.
However, interestingly, the volume inside the FS expands
compared to the noninteracting case. In the Fermi liquid,
the volume should not change according to Luttinger’s
theorem [37]. Thus, a change in the volume indicates an
appearance of an unusual metallic state. Note that, for a
smaller Hund’s coupling (J=U ¼ 1=8), the momentum
dependence of the self-energy becomes much weaker
[dashed curve in Fig. 3(c)]. This evidences that Hund’s
coupling is the trigger of the unusual nonlocal correlation
effect.
To further analyze the FS at n ¼ 1.5, in Fig. 3(d), we

show the effective single-particle energy dispersion ξeffk ¼
ϵk þ ReΣkð0Þ − μ, where ReΣkð0Þ is approximated by
ReΣkðiω0Þ. ξeffk ¼ 0 determines the position of the FS,
unless the imaginary part of the self-energy is large. As the
interaction increases, the effective dispersion is modified by
the correlation effect. As is clear from the inset of Fig. 3(d),
the momenta for ξeffk ¼ 0 at U ¼ 12 (white region) deviate
from the noninteracting ones (green curve), consistent with
the FS expansion shown in Fig. 3(b). We note that at the
momenta k ¼ ðπ; 0Þ and ð0; πÞ, directly accessible by the
2 × 2 cDMFT, ξeffk is negative for U ¼ 12 (i.e., k ¼ ðπ; 0Þ
and ð0; πÞ are inside the FS), in contrast with the U ¼ 0

case showing a positive ξeffk [38]. Thus, the volume
expansion of the FS is not an artifact of the periodization.
Under the strong freezing FM correlations, even though

the long-time average is zero, a spin-polarized state is
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FIG. 2. Results for n ¼ 1.9. (a) Imaginary part of the periodized
self-energy for various values of U ¼ 4J. (b) The FS (−βGkðτ ¼
β=2Þ normalized by its maximum value) at U ¼ 4J ¼ 6. The
light green curve in (b) shows the FS at U ¼ J ¼ 0.
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FIG. 3. Results for n ¼ 1.5 and J=U ¼ 1=4. (a),(b) The FS (−βGkðτ ¼ β=2Þ normalized by its maximum value), (c) the imaginary
part of the periodized self-energy, and (d) the effective dispersion ξeffk ¼ ϵk þ ReΣkð0Þ − μ [where ReΣkð0Þ is approximated by
ReΣkðiω0Þ] with the inset showing the contour map of ξeffk for U ¼ 12. The light green curves in (a),(b) and the inset of (d) show the FS
at U ¼ J ¼ 0. In (c), for comparison, the result for U ¼ 8J ¼ 12 (dashed curve) is also shown.
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realized as a snapshot. Then, it acts like an effective
“Hund’s coupling” in momentum space, as the FM
exchange interaction in real space aligns spins also in
momentum space [16]. Then, the effective “Hund’s cou-
pling” competes with an effective “crystal-field splitting”
(energy difference in ϵk between different momenta). As
Hund’s coupling effectively reduces the crystal-field split-
ting and pump electrons into unoccupied orbitals to realize
high-spin states in real space, the effective “Hund’s
coupling” brings about the rearrangement of the electron
distribution in momentum space.
The effective “Hund’s coupling” not only affects the FS

but also rearranges the electron occupation nk in the whole
momentum space. Figure 4(a) shows the change Δnk of the
occupation from the noninteracting value. Inside the
original FS at U ¼ 0, Δnk is close to −1, which means
that nk is close to half-filling. This is due to the strong
imaginary part of the self-energy around k ¼ ð0; 0Þ
[Fig. 3(c)], which reduces the occupation significantly
inside the original FS by producing the incoherent weight
on the unoccupied side [39]. To compensate the occupation
loss around k ¼ ð0; 0Þ, the occupation increases signifi-
cantly outside the original FS and inside the expanded FS:
in this region, the effective “Hund’s coupling” lowers the
energy of the originally unoccupied momenta, making ξeffk
negative [Fig. 3(d)].
When the interaction is restricted to the density-density

type, i.e., Hund’s coupling is assumed to be Ising-like with
only SzSz components, the correlation effect is exaggerated
compared to the original rotationally invariant case. The
self-energy at k ¼ ð0; 0Þ becomes more divergent, and the
reconstruction of the FS is seen more clearly (Figs. S5 and

S6 in the SM). Also, the momentum-space redistribution of
the electron occupation is more significant [Fig. 4(a)]: The
occupation inside the original FS is closer to half-filling
nk ¼ 1. This shows more clearly that, in the unusual
metallic state, the effective “Hund’s coupling” surpasses
the effective “crystal-field splitting,” forming a “high-
spin”-like configuration in momentum space.
Figure 4(b) shows the single-particle spectral function in

the strong-coupling FM-fluctuation regime (U ¼ 12, T ¼
0.06 with the density-density-type interaction). The peak of
the spectral function deviates significantly (on the order of
t) from the noninteracting paramagnetic band dispersion
(solid curve). Rather, it is close to the majority-spin band
dispersion (dashed curve) with a mass renormalization. We
also see a feature around ω ¼ 1 that looks like a blurred
minority-spin band. Thus, even in the paramagnetic state,
we see a spectral feature as if a spin polarization occurred
[41]. As we shall discuss below, this is characteristic of the
strong-coupling regime, where the local moment is formed
well above TC.
Discussion.—Recently, unusual metallic behaviors have

been reported under strong FM fluctuations [6–8] as is
mentioned in the introduction. Whereas these studies
consider the coupling of itinerant fermions to critical spin
systems, our study suggests that the d-electron systems
represented by the multiorbital Hubbard model may offer
another excellent playground to study unusual metallic
behaviors subject to FM fluctuations. Although there exists
a FM fluctuating regime [42,43] in the single-orbital
Hubbard model with a large t0 around 50% hole doping,
the correlation effect is rather weak due to the small
electron density (see Fig. S2 in the SM). This suggests
that Hund’s ferromagnets in the strong-coupling regime,
where unscreened large local moments are fluctuating
above TC, are suitable to see the FS expansion clearly.
The present cDMFT results go beyond the conventional

Hund’s metal picture discussed within the DMFT. The
strongly momentum-dependent self-energy modifies the
effective dispersion and brings about the momentum-space
electron redistribution through producing the incoherent
spectral weight. Furthermore, in contrast with the DMFT
result, in which a Fermi-liquid behavior recovers at very
low temperatures [13,44], the divergence of the self-energy
at k ¼ ð0; 0Þ becomes significant as T decreases (Fig. 5 in
the SM). Thus, the present bad metallic behavior at finite
temperatures may persist down to low temperatures, and a
non-Fermi-liquid phase, which cannot be connected adia-
batically to the Fermi-liquid fixed point, may emerge
at T ¼ 0.
Summary.—Using the cDMFT, we have revealed a

different aspect of Hund’s physics discussed so far locally
in real space. Associated with the strong AFM and FM
fluctuations, the electron self-energy acquires a strong
momentum dependence in different ways. In particular,
the FM spin correlation induces effective “Hund’s physics”
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FIG. 4. (a) Change in the momentum-space occupation Δnk per
orbital from the noninteracting case, calculated for n ¼ 1.5,
U ¼ 4J ¼ 12, and T ¼ 0.08. The shaded part indicates the
region inside the FS at U ¼ 0. The result with the density-
density-type interaction (dotted curve) is also shown for com-
parison. (b) Spectral function AkðωÞ ¼ −ð1=πÞImGkðωÞ at
n ¼ 1.5, U ¼ 4J ¼ 12, and T ¼ 0.06 for the density-density-
type interaction model, where the correlation effect is exagger-
ated compared to the rotationally invariant case. The solid
(dashed) curve indicates the noninteracting (fully polarized
ferromagnetic majority-spin) band dispersion. For the analytic
continuation, we used the MAXENT package [40].
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in momentum space, leading to a significant modulation of
the momentum-space occupation. The resulting FS shows a
volume change at finite temperatures, differently from the
AFM-fluctuating metals. Finally, we note that, to detect the
unusual metallic state experimentally, FM materials exhib-
iting large local moments are suitable (e.g., FM layered
manganites [45]), and the orbital and momentum depend-
ence of the self-energy must be disentangled carefully.
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