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Future improvements in particle accelerator performance are predicated on increasingly accurate online
modeling of accelerators. Hysteresis effects in magnetic, mechanical, and material components of
accelerators are often neglected in online accelerator models used to inform control algorithms, even
though reproducibility errors from systems exhibiting hysteresis are not negligible in high precision
accelerators. In this Letter, we combine the classical Preisach model of hysteresis with machine learning
techniques to efficiently create nonparametric, high-fidelity models of arbitrary systems exhibiting
hysteresis. We experimentally demonstrate how these methods can be used in situ, where a hysteresis
model of an accelerator magnet is combined with a Bayesian statistical model of the beam response,
allowing characterization of magnetic hysteresis solely from beam-based measurements. Finally, we
explore how using these joint hysteresis-Bayesian statistical models allows us to overcome optimization
performance limitations that arise when hysteresis effects are ignored.
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Hysteresis is a well-known physical phenomenon where
the state of a given system is dependent on its historical
path through state-space. This property is evident in
physical, biological, chemical, and engineering processes,
including the magnetization of ferromagnetic materials [1],
the activation of embryonic cells [2], the charging and
discharging cycles of nickel-metal hydride batteries [3],
and the driving of mechanical actuators [4]. In particular,
hysteresis effects in magnetic [5], mechanical [6], and
material [7] elements of particle accelerators make opti-
mizing the performance of current accelerator facilities
used for scientific discovery challenging.
State-of-the-art optimization algorithms, such as

Bayesian optimization (BO) [8,9], use online computa-
tional models of objective functions to tackle optimization
tasks at accelerator facilities [10–12]. However, models
used in these algorithms ignore hysteresis effects entirely,
limiting optimization performance due to errors caused by
hysteresis (e.g., see Refs. [13,14]). These limits on opti-
mization performance are further amplified when consid-
ering ambitious targets for future accelerators, [15,16]
which are increasingly sensitive to hysteresis effects.
Incorporating an accurate description of hysteresis into
models used for online accelerator optimization would
substantially improve the performance of current and future
particle accelerators.

Nonparametric Preisach modeling [17] is a flexible
approach for accurately describing systems that exhibit
hysteresis behavior. Unfortunately, fitting these models to
experimental measurements using numerical optimization
techniques has been shown to be computationally expensive
[18,19] when a large number of free parameters are present,
due to the so-called “curse of dimensionality” [20].
In this Letter, we construct a differentiable, nonpara-

metric Preisach model, which when used in conjunction
with gradient-based optimization, significantly reduces the
computational cost of model identification. We explore
how our technique enables accurate online modeling of the
beam response with respect to controllable accelerator
parameters through the use of joint hysteresis-Bayesian
statistical models. We experimentally demonstrate how this
enables the characterization of hysteresis properties in
magnetic beamline elements from beam-based measure-
ments. Finally, we explore how the joint model improves
optimization of a realistic beamline containing magnetic
elements exhibiting hysteresis.
The Preisach model of hysteresis [21,22] is composed of

a discrete set of hysterons, which when added together,
model the output of a hysteretic system fðtÞ for a time
dependent input uðtÞ. Given a set of discrete time ordered
inputs ui ¼ uðtiÞ, the hysteron state is represented by the
hysteron operator γ̂αβ shown in Fig. 1(a), which has an
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output of �1, where α and β describe the input required to
switch a hysteron between its two possible states. The
number of hysterons with values (α, β) is given by the
hysteron density function μðα; βÞ, plotted on the Preisach
(α-β) plane [Fig. 1(b)].
The Preisach model output is represented by

fðtÞ ¼ Γ̂uðtÞ ¼
Z Z

α≥β
μðα; βÞγ̂αβuðtÞdαdβ ð1Þ

where α ≥ β results from physical conditions of the
hysteron operator. This integral is evaluated through a
geometric interpretation, shown in Fig. 1(c). Given the
sequence of input values ui, we can determine subregions
of the Preisach plane Sþ and S−, where hysteron operators
output positive and negative states respectively. We start
with the assumption that all hysterons are initially in the
negative state (S− covers the entire Preisach plane). When
ut > ut−1, a horizontal line is swept up, flipping hysteron
states from negative to positive, increasing the Sþ region.
Conversely, when ut < ut−1, a vertical line is swept to the
left, flipping states from positive to negative.
Once the regions Sþ and S− are determined by the input

uðtÞ, fitting a Preisach model to experimental data requires
the determination of the hysteron density function μðα; βÞ,
often referred to as the identification problem. Approaches
for solving this problem are generally divided into
parametric or nonparametric methods. Parametric
methods describe the hysteron density using one of
several analytic functions with a small number of free
parameters [19,23,24], which can be determined through
numerical optimization methods given experimental data.
However, this limits model flexibility, resulting in predic-
tion errors for systems that do not match the chosen
analytical function. On the other hand, nonparametric

methods [18,25,26] discretize the density function using a
mesh grid [Fig. 1(b)] and attempt to determine the density of
hysterons at each mesh point based on experimental mea-
surements. However, fitting a nonparametric, high-fidelity
Preisach model containing thousands of mesh points is
prohibitively expensive when using black box numerical
optimization techniques.
We improve upon nonparametric modeling of hysteresis

by creating differentiable Preisach models, which use
gradient-based optimization to identify the hysteron density
function at high fidelities. Differentiable modeling refers to
tracking derivative information during every step of internal
model calculations. This allows what is known as back
propagation [27], where through the chain rule, the deriva-
tive of the model output with respect to any model parameter
is analytically calculable. By combining this technique with
gradient-based optimization algorithms (e.g., L-BFGS-B
[28] or Adam [29]), we are able to scale nonparametric
Preisach models to thousands of mesh points, while still
being computationally practical for use in online modeling.
We construct a differentiable Preisach model by imple-

menting the nonparametric version of Eq. (1) in the python
library PyTorch [30]. The continuous hysteron density
μðα; βÞ is replaced with a discrete one, located on a
triangular mesh containing N mesh points on the
Preisach plane giving μi ¼ μðαi; βiÞ, where i ¼ 1;…; N.
We also replace the hysteron operator γ̂αβ with a differ-
entiable approximation ζ̂αβ, enabling differentiability with
respect to uðtÞ as shown in Fig. 1(a) (see the Supplemental
Material [31] for the exact form). The differentiable,
nonparametric Preisach model is given by

fðtÞ ¼
XN
i¼1

μiζ̂αβ;iuðtÞ ð2Þ

FIG. 1. Elements of the differentiable nonparametric Preisach hysteresis model. (a) Output of the hysteron operator γ̂αβ and the
approximate differentiable hysteron operator ζ̂αβ acting on the input uðtÞ. (b) Discretization of the hysteron density function on the
Preisach (α-β) plane. Note that μðα; βÞ ¼ 0 if α < β, α > αm, or β < βm where αm, βm are equal to the maximum and minimum inputs of
the model respectively. (c) Positive (Sþ) and negative (S−) hysteron state subdomains after three time steps, where u1 > u3 > u2 > βm,
assuming that all hysterons are in the negative state initially. Inset: corresponding model output (not to scale).
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where ζ̂αβ;i is the differentiable hysteron operator at the ith
mesh point.
We demonstrate the effectiveness of our differentiable

Preisach model by using it to analyze experimental data
gathered from a quadrupole magnet at SLAC National
Accelerator Laboratory. Current applied to the magnet
was cycled to sample both major and minor hysteresis
loops, and the integrated gradient at the magnet center was
measured using a rotating coil technique [32]. Measurements
were then split into training and test sets to investigate how
accurately the model predicted measurement data and
generalized to unknown future measurements.
Accelerator magnets pose a unique hysteresis modeling

challenge, as they are designed specifically to minimize
field perturbations from a polynomial function of magnet
current due to hysteresis [32]. Despite this, realistic
magnets contain field perturbations that cannot be tolerated
in high precision applications [5]. We are interested in
resolving these field perturbations, which result from
nonzero hysteron densities off of the α ¼ β line, denoted
as μ̄ðα; βÞ. Resolving these small perturbations requires
specialized data processing and model construction, details
of which can be found in the Supplemental Material [31].
Model fitting to hysteresis perturbations observed in

experiment is shown in Fig. 2 using an adaptive triangular
mesh containing 7411 mesh points. We trained the model
on an Intel i9-9900 K CPU at 3.6 GHz using a mean
squared error loss function and the Adam algorithm with a
learning rate of 0.01 over 10 k steps, which took approx-
imately 67 s. This is roughly 2 orders of magnitude faster
than a comparable analysis in previous nonparametric
studies [18].

Our model captures the features of major hysteresis
loops with an rms training error σtrain of 0.8 mT, corre-
sponding to a percentage error (p ¼ 100σtrain=fmax) of
0.015%. Despite only training on major hysteresis loops,
our model makes accurate predictions of minor hysteresis
loops and large swings in applied current with an rms
error of 2.6 mT (0.051%). Our model significantly out-
performs polynomial fitting of the unnormalized exper-
imental data, which has an rms error of 12.1 mT (0.23%)
over the entire dataset.
Next, we examine the case where directly measuring

hysteresis output is impractical or impossible. For exam-
ple, fields cannot be accurately characterized for mag-
netic elements that are already installed in accelerator
beamlines. Instead, we may only observe the beam
response to fields generated by these elements. To
determine hysteresis characteristics in this case, we
combine our hysteresis model with a Gaussian process
(GP) model [9] representing beam propagation as a
function of magnetic fields. We then infer hysteresis
behavior from measurements of beam properties as a
function of magnet current.
The overall characteristics of GPs, defined as gðxÞ ∼

GP½mðxÞ; kðx; x0; θÞ� with a mean function mðxÞ and
covariance function kðx; x0; θÞ, are governed by a set of
hyperparameters θ, which describe our prior knowledge of
the model’s smoothness, amplitude, and noise. GP models
predict the distribution of function values at a location x to
be pðgjD; x; θÞ ¼ N ½μðxÞ; σ2ðxÞ�, where D ¼ fX; yg is the
set of training samples and μðxÞ, σ2ðxÞ are the posterior
mean and uncertainty (see the Supplemental Material [31]
for details). We infer hyperparameters for a GP model from

FIG. 2. Nonparametric modeling of hysteresis perturbations using direct measurements of a SLAC quadrupole magnet. (a) Normalized
hysteresis error training data, test data and model predictions. Sequence of applied currents during measurements uðtÞ is normalized
during training to the unit domain, and measured field errors are transformed such that the training data has zero mean and a standard
deviation of 1. (b) Normalized hysteron density representing hysteresis perturbations μ̄i on the normalized Preisach plane after model
training.
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training data by maximizing the marginal likelihood given
by

pðyjXÞ ¼
Z

pðyjX; θÞpðθÞdθ ð3Þ

with respect to the hyperparameters θ, resulting in a
model that balances the trade-off between accuracy and
complexity.
Wecombine the hysteresis andGPmodels into a single joint

model by treating the hysteresis output as the GP input and
training both models simultaneously. The joint hysteresis-GP
model is given by

pðgjD; t;ϕ; θÞ ¼ N
�
μ½fðtÞ�; σ2½fðtÞ�

�
ð4Þ

whereϕ represents hysteresis model parameters. The joint
set of parameters Φ ¼ fϕ; θg is then determined by
maximizing the marginal likelihood using Eq. (3) with
respect to the new set of parameters Φ.
We demonstrate the effectiveness of our joint hysteresis-

GP (H-GP) model by fitting the beam response with
respect to the current applied to a focusing magnet located
in the Advanced Photon Source (APS) injector [33]. The
current of the quadrupole magnet was varied using a
sawtooth pattern from −2A to þ2A while measuring the
beam charge passing through a downstream current monitor.
Measurements from this experiment, shown in Fig. 3, have
two sources of uncertainty, one from random noise inherent
in the accelerator (aleatoric uncertainty) and one due to the
unknown properties of magnetic hysteresis (epistemic uncer-
tainty). A normal GP model [Fig. 3(a)] does not take into
account the existence of hysteresis; thus it interprets episte-
mic errors due to hysteresis as aleatoric uncertainty, over-
estimating uncertainties in portions of the input domain.
However, the joint hysteresis-GP model [Fig. 3(b)] is able to
resolve hysteresis cycles inside the data, removing epistemic
uncertainties in the model prediction, thus improving model
accuracy and reducing uncertainty.
The increase in accuracy from joint hysteresis-GP

models has ramifications for model-based, online optimi-
zation of accelerators using BO. We examine how models
with and without hysteresis taken into account affect
optimization performance when optimizing a simulated
accelerator that contains realistic magnetic elements which
exhibit hysteresis. We simulate the task of sequentially
optimizing currents applied to three identical quadrupoles
using BO, in order to transform an incoming round beam
with an rms beam size of σx;y ¼ 5 mm to a final round
beam size of σtarget ¼ 8 mm, assuming that the hysteresis
properties of the magnets have been previously determined.
The objective function is given by a geometric mean of the
beam size deviation l ¼ ffiffiffiffiffiffiffiffiffiffiffi

ΔxΔy
p

where Δk ¼ jσk − σtargetj.
A toy hysteresis model (described in the Supplemental

Material [31]) with a tunable hysteresis magnitude was
used to simulate realistic magnetic elements. Three beam-
lines with maximum fractional hysteresis errors Hϵ ¼ 0,
0.1, and 0.4 were used in optimization trials to represent
ideal, realistic, and extreme hysteresis effects respectively.
We performed BO using the upper confidence bound

acquisition function [34], first with β� ¼ 2 which balances
exploration (sampling points in unexplored regions of input
space) and exploitation (sampling points that are predicted
to be at global extrema). We then repeated the experiment
with β� ¼ 0.1, which prioritizes exploitation. Optimization
results obtained over 64 trials using BO with GP and H-GP
models are shown in Fig. 4.
Figure 4(a) shows that hysteresis has little effect on the

performance of BO when balancing exploration and
exploitation, even when extreme hysteresis errors are
present. The acquisition function in this case often chooses
to measure points in unexplored regions of input space and,
as a result, is relatively insensitive to hysteresis errors.

FIG. 3. Comparison between GP modeling and joint hyste-
resis-GP modeling of beam transmission as a function of
quadrupole current at the APS injector. (a) GP model prediction
with training data over three cycles (see inset). Shading denotes
2σ confidence region. (b) Hysteresis-GP model prediction,
colored by cycle index.
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On the other hand, if we attempt to exploit the model as
shown in Fig. 4(b), modeling errors due to hysteresis effects
in normal GP models negatively impact optimization
performance, depending on the magnitude of hysteresis
errors. A joint hysteresis-GP model significantly improves
optimization performance, matching the performance
observed when optimizing an idealized beamline without
hysteresis.
These results identify a clear strategy for optimizing

physical systems that contain hysteresis using BO.
Hysteresis effects can be neglected when coarsely search-
ing for the global optima of a system, even when hysteresis
errors are significant, since the optimization is dominated
by uncertainties associated with unexplored regions in
input space (especially in high dimensional input spaces
where uncertainties are large). However, hysteresis effects
must be taken into account when attempting to exploit
extrema during optimization. In this case, a model of the
hysteresis behavior can then be constructed by cycling the
magnet current while directly measuring the fields inside

the magnet or indirectly measuring the effect of the
magnetic fields on beam properties. Once identified, the
hysteresis model is combined with a GP model of the beam
response to conduct BO to exploit predicted extrema. Our
technique thus enables a staged approach toward optimi-
zation of systems involving hysteresis, where model and
computational complexity is traded for optimization
precision.
In conclusion, we have demonstrated how a differen-

tiable Preisach model can describe arbitrary hysteretic
systems using direct or indirect measurements, and can
improve the model-based optimization of those systems.
We collected direct and indirect measurements of systems
exhibiting hysteresis and then used the procedure described
here to construct a model for the hysteretic behavior.
Improved identification speed of differentiable Preisach
modeling enabled practical, high-fidelity regression of
major and minor hysteresis loops in realistic magnetic
elements. We demonstrated that our hysteresis model can
be combined with GP modeling to infer hysteresis behavior
without making direct measurements of the hysteresis
response. Finally, we demonstrated how these joint hyste-
resis-GP models can be used to optimize physical systems
containing hysteretic behavior, overcoming limitations
faced by currently used algorithms that neglect hysteresis
repeatability errors. This development enables future
advanced modeling techniques of hysteresis, most notably
implementing fully Bayesian hysteresis models using
stochastic variational inference [35].
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