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Verifying nonlinear stability of a laminar fluid flow against all perturbations is a central challenge in fluid
dynamics. Past results rely on monotonic decrease of a perturbation energy or a similar quadratic
generalized energy. None show stability for the many flows that seem to be stable despite these energies
growing transiently. Here a broadly applicable method to verify global stability of such flows is presented.
It uses polynomial optimization computations to construct nonquadratic Lyapunov functions that decrease
monotonically. The method is used to verify global stability of 2D plane Couette flow at Reynolds numbers
above the the energy stability threshold found by Orr in 1907 [The stability or instability of the steady
motions of a perfect liquid and of a viscous liquid. Part II: Aviscous liquid, Proc. R. Ir. Acad. Sect. A 27, 69
(1907)]. This is the first global stability result for any flow that surpasses the energy method.
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A central approach to understanding fluid dynamics has
been to study a handful of canonical systems in detail.
Despite many discoveries over the last century, one of the
simplest-seeming questions remains open for some of
the most-studied systems: at given parameter values, will
the flow return to its simplest (laminar) state no matter how
it is perturbed? Laboratory experiments and simulations of
the Navier–Stokes equations are unable to give a complete
answer for all perturbations. Theoretical methods are
needed to guarantee global stability.
For a steady laminar velocity field UðxÞ solving the

incompressible Navier–Stokes equations, the velocity,
uðx; tÞ, and pressure, pðx; tÞ, of perturbations around
the laminar state evolve according to

∂
∂tuþ u ·∇u ¼ −∇pþ 1

ReΔuþ AðuÞ; ð1Þ

∇ · u ¼ 0; ð2Þ

where AðuÞ ¼ −U ·∇u − u ·∇U and Δ is the Laplacian
operator [1]. Quantities in (1)–(2) are dimensionless,
having been scaled using a length scale h, velocity scale
U, and kinematic viscosity ν. Choices of h andU depend on
the particular system. The dimensionless Reynolds number
is Re ¼ Uh=ν.
There is a critical threshold ReG > 0 such that the

laminar state U is globally asymptotically stable (meaning
all perturbations u eventually converge to zero) if and only
if Re < ReG [1]. Loss of global stability is not sufficient for
turbulence, but it is necessary, and often it is more
informative than linear stability. Linear stability of the
laminar state does not preclude turbulence whose onset is

subcritical [2–6], nor does it ensure that the laminar state is
physically realizable because the basin of attraction can be
minuscule [7–9]. The value of ReG, however, can be very
hard to determine.
An upper bound on ReG is provided by any Re at which a

sustained nonlaminar flow is found. A lower bound on ReG
requires finding a Re threshold below which the laminar
state is globally stable. Thus far the only method applicable
to all systems governed by (1)–(2) has been the energy
method pioneered by Reynolds and Orr [10,11], where one
finds the threshold ReE such that the kinetic energy,
E ¼ 1

2

R juj2dx, of every perturbation decreases monoton-
ically toward zero if and only if Re < ReE. Often the lower
bound on ReG provided by ReE is very conservative. In
systems where turbulence is driven by parallel shear, such
as pressure-driven flow in a pipe or boundary-driven flow
in a layer, the energy stability thresholds ReE [12–15] are
much smaller than the minimum Re at which sustained
nonlaminar states have been found [4,16–18]. In other
words, there is a large gap between these lower and upper
bounds on ReG.
Global stability at Re values above ReE has been shown

only in special cases where the energy method can be
slightly generalized. Each such result has relied on mon-
otonic decrease of a quadratic integral that is an inviscid
invariant, meaning the nonlinear term in (1) does not
contribute to the expression for the integral’s evolution.
For symmetric perturbations where individual components
of E are conserved, for instance, one can consider various
linear combinations of these components [15,19–21].
Lacking an artificial symmetry on u, however, E is the
only non-negative quadratic integral that can be shown to
decrease globally. In this general situation there has been no
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method for verifying global stability above ReE, aside from
the one presented here.
The standard way to show that a solution of a dynamical

system is globally asymptotically stable is to construct a
Lyapunov function. Here this is a functional V that maps
each spatial function uð·; tÞ to a real number and satisfies
Vð0Þ ¼ 0. Let LV denote the Lie derivative of V along
PDE solutions of (1)–(2), meaning LV is the functional
such that LVðuð·; tÞÞ ¼ d

dt Vðuð·; tÞÞ for all uðx; tÞ solv-
ing (1)–(2). The u ¼ 0 state is globally attracting if VðuÞ >
0 and LVðuÞ < 0 for all nonzero u admitted by the
boundary conditions [22]. The energy method uses V ¼
E or, when symmetries allow it, weighted combinations of
the components of E.
Our method constructs Lyapunov functionals V with

polynomial dependence on u, in particular with

VðuÞ ¼ Vða; qÞ ¼ Ed þ Pða; qÞ; ð3Þ

where aðuÞ ∈ Rm, qðuÞ ∈ R, d is an integer, and P is a
polynomial whose degree is at most 2d − 1. By definition,
the components of a are projections of u onto an orthogo-
nal set of spatial modes, fu1ðxÞ;…;umðxÞg, and 1

2
q2 is the

energy of the unprojected remainder of u. For reasons
explained shortly, we choose the ui to be eigenfunctions of
the energy stability operator. Constructing P and verifying
that V is a valid Lyapunov functional presents major
challenges beyond the quadratic case. A general way to
surmount these challenges is presented below, but first we
summarize stability results found by applying our method
to a classic fluid flow.
To show that Lyapunov functionals of the form (3) can

surpass existing methods we consider 2D plane Couette
flow, which is driven by parallel relative motion of the
boundaries. We have verified global stability of this flow
beyond the energy stability threshold given by Orr [11].
The reason for considering a 2D flow, aside from Orr’s
result being especially long-standing, is to reduce the
computational cost of testing our method. The same
approach is applicable to arbitrary 3D perturbations, but
this is left for future work. The flow is periodic in the
streamwise direction, x ∈ ð0; LÞ, and confined in the wall-
normal direction, y ∈ ð− 1

2
; 1
2
Þ. Perturbations about the

laminar flow U ¼ ðy; 0Þ obey (1)–(2) and satisfy no-slip
conditions uðx;� 1

2
Þ ¼ 0 at the walls. With this nondimen-

sionalization, Re is defined using the full velocity differ-
ence and height difference between the shearing planes.
Some authors use half these differences, so their Reynolds
number is 1=4 of the Re shown here.
The true value of ReG in 2D plane Couette flow is

unknown. Several computational efforts have failed to find
sustained non-laminar states [23–25], and the laminar state
is linearly stable for all Re [3], so ReG has no known upper
bound and may be infinite. For each streamwise period L,
the energy method gives a lower bound ReEðLÞ ≤ ReGðLÞ.

As found by Orr [11], its minimum ReE ≈ 177.2 occurs at
integer multiples of LE ≈ 1.659. (In three dimensions, ReG
is bounded below by ReE ≈ 82.6 [12,14] and above by 511,
the smallest Re at which traveling waves solutions have
been computed numerically [17,18]).
Here we have constructed many V of the form (3), all

having quartic degree (d ¼ 2) and depending explicitly on
the projections ai of u onto various ui modes. Results are
reported for four different mode sets (defined later) whose
number of modes (m) are 6, 8, 12, and 13. Figure 1 shows
Re values at which stability has been verified using each set
of modes, along with the energy stability threshold ReEðLÞ.
At each plotted point, a different Lyapunov functional was
constructed to show global stability for perturbations of
period L at the Re indicated. Raising the number of modes
on which V depends increases the Re at which stability can
be verified, but it also increases the computational cost of
constructing V by the method explained below, which
limited us to 13 modes.
Over the full range of periods L for which computations

were performed, results surpass the energy method. For
instance, at the most energy-unstable period LE where the
energy method gives stability up to ReE ≈ 177.2, our best V
verified stability at Re ¼ 252.4. Beyond the implications
for Couette flow, the greater significance of these results is
the proof of concept for a broadly applicable new method—
the first generalization of the energy method that is
applicable to any 2D or 3D flow.
To recall the workings of the energy method, note that

positivity of E is clear, so implementing the energy method
amounts to determining the Re at which LE < 0 for all
admissible perturbations. In systems where u is periodic
and/or vanishes at all boundaries,

FIG. 1. Reynolds numbers (Re) at which laminar plane Couette
flow is globally asymptotically stable against 2D perturbations of
period L. Each symbol indicates values ðRe; LÞwhere we verified
stability using a quartic Lyapunov functional. Each functional
depends explicitly on the flow’s projection onto 6, 8, 12, or 13
energy eigenmodes, and on the unprojected energy. Lines
connect symbols to guide the eye. Orr’s energy stability threshold
ReEðLÞ is also shown.
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LE ¼
Z �

− 1
Re j∇uj2 − u · D · u

�
dx; ð4Þ

where D ¼ 1
2
ð∇Uþ∇TUÞ is the laminar strain-rate tensor

[1]. Variational arguments imply that LE < 0 for all
divergence-free nonzero u if and only if all eigenvalues
λ are negative for the energy eigenproblem [15,26,27]

�
1
ReΔ − D

�
w −∇ζ ¼ λw; ∇ · w ¼ 0; ð5Þ

where ζ is the Lagrange multiplier enforcing incompress-
ibility of w. The largest Re at which λ ≤ 0 defines the
energy stability threshold ReE. Only because LE is
quadratic can its negativity be verified from a linear
Euler–Lagrange equation (5). Going beyond quadratic V
requires another way to enforce V > 0 and LV < 0.
To construct new nonquadratic V, we follow the ideas in

[28] and consider a partial Galerkin expansion of u,

uðx; tÞ ¼
Xm
i¼1

aiðtÞuiðxÞ þ vðx; tÞ; ð6Þ

where the ui are selected modes of the energy eigenproblem
(5), and ai ¼

R
u · uidx is the orthogonal projection of u

onto ui. Let q ¼ ðR jvj2dxÞ1=2, so the perturbation energy is
E ¼ 1

2
ðjaj2 þ q2Þ. Lyapunov functionals V will be functions

of themþ 1 scalars ða; qÞ, each ofwhich is a functional ofu.
To derive the functional LV that coincides with d

dt V
along solutions of (1)–(2), we let only even powers of q

appear in V, in which case d
dt V ¼ ∂V

∂a ·
da
dt þ ∂V

∂q2
dq2

dt .

Projecting the Navier–Stokes equations gives expressions
of the form da

dt ¼ fþΘ and dq2

dt ¼ −2a ·Θþ 2Γ [29].
These constitute an “uncertain system” for the evolution
of ða; qÞ sinceΘ and Γ (given below) depend on the tail v in
a way that is not uniquely determined by its energy 1

2
q2.

The resulting expression for LV is [29]

LVða; q; vÞ ¼ Gða; q; vÞ þMða; qÞ ·Θða; vÞ; with

Gða; q; vÞ ¼ ∂V
∂a · fðaÞ þ 2

∂V
∂q2 ΓðvÞ;

Mða; qÞ ¼ ∂V
∂a − 2

∂V
∂q2 a;

Θða; vÞ ¼ ΘABða; vÞ þΘCðvÞ;
fiðaÞ ¼ Lijaj þ Nijkajak;

Lij ¼ 1
Re hui;Δuji þ hui; AðujÞi;

Nijk ¼ −hui;uj · ∇uki;

ΘABiða; vÞ ¼ hv;hi0i þ hv;hijiaj;
hi0 ¼ 1

ReΔui þ U · ∇ui − ui ·∇TU;

hij ¼ uj · ∇ui − ui ·∇Tuj;

ΘCiðvÞ ¼ hv; v · ∇uii;
ΓðvÞ ¼ 1

Re hv;Δvi − hv;Dvi; ð7Þ

and hu; vi ¼ R
u · vdx.

Positivity of V is enforced by regarding Vða; qÞ as a
polynomial on Rmþ1, rather than a functional of u.
Requiring positivity of this polynomial away from the
origin constrains P. Negativity of LV is enforced in a
similar way, but since LV depends on the full tail v, it first
must be bounded above by a polynomial depending only on
ða; qÞ. The reason we choose the ui to be modes of the
energy eigenproblem is so that ΓðvÞ ≤ κq2 [28], where κ is
the largest eigenvalue from (5) not associated with any of
the m modes in the sum of (6). Enough modes are included
so that κ < 0, and we impose ∂V

∂q2 ≥ 0 so that

Gða; q; vÞ ≤ G̃ða; qÞ ¼ ∂V
∂a · fðaÞ þ 2

∂V
∂q2 κq

2: ð8Þ

A procedure described in the Supplemental Material [30]
introduces a polynomial Ξða; qÞ with auxiliary constraints
that ensure

Mða; qÞ ·Θða; vÞ ≤ Ξða; qÞ: ð9Þ

By (7)–(9), if G̃þ Ξ < 0 for all ða; qÞ, then LV < 0 for all
u. Therefore, if polynomials Pða; qÞ and Ξða; qÞ are found
such that V > 0, G̃þ Ξ < 0, and ∂V

∂q2 ≥ 0 for all nonzero

ða; qÞ, and such that the inequalities in the Supplemental
Material [30] guaranteeing (9) hold, then V is a valid
Lyapunov functional. Each of these constraints amounts to
non-negativity of a polynomial expression.
Verifying that a polynomial is non-negative is computa-

tionally intractable (NP-hard) in general [31]. A tractable
sufficient condition is that the polynomial can be written as
a sum of squares of other polynomials. Computational
techniques for enforcing sum-of-squares (SOS) constraints,
introduced two decades ago [32–34], let us search for P and
Ξ in a chosen bounded-degree set of polynomials subject to
SOS constraints that imply all of the inequalities described
above. If such P and Ξ are found, then V defined by (3) is a
valid Lyapunov functional. The tunable coefficients of P
and Ξ appear linearly in the expressions that must be SOS,
and the problem of choosing these coefficients subject to
the SOS constraints can be reformulated [35,36] as a
semidefinite program—a type of conic optimization prob-
lem that can be solved numerically using specialized
software. When Re < ReE, a solution always exists with
P ¼ Ξ ¼ 0.
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The approach to fluid stability described above was
proposed but not implemented in [28]. As a preliminary
test, the idea was applied in [29] to an example contrived
to have simple energy eigenmodes. Quartic and sextic
Lyapunov functionals were successfully computed in [29],
but they had no chance to improve upon the energy method;
a weighted energy (which can be used due to symmetries)
already gives ReG exactly for that flow. The present work
adds three contributions. First, we show that the approach
of [28] can surpass quadratic Lyapunov functionals in
practice. Second, we do this in a realistic context where the
energy eigenproblem (5) must be solved computationally.
Third, we make a crucial technical change to the way Ξ is
defined and constrained in [28], as described in the
Supplemental Material [30], and this improves our results
dramatically.
The ansatz (3) for V is not an arbitrary polynomial since

some structure can be deduced a priori. BothV andLV must
be sign definite, so their highest-degree termsmust be of even
degree. This is possible only if the nonlinearity in (1) does not
contribute to the evolution of the highest-degree term inV, in
which case both expressions can have the same maximum
degree. This is why the leading term in (3) takes the formEd.
Further, P can have no terms of degree less than two since V
must have a unique minimum when u ¼ 0. When d ¼ 1
these constraints require V to be the energy E in general,
reflecting the lack of freedom in the quadratic case. When
d ≥ 2 there is significant freedom in the choice of P.
Constructing a polynomial Ξ that is guaranteed to satisfy

(9) requires computing all tensors in (7). To do so one must
first compute energy eigenmodes of (5) for the chosen values
of ðRe; LÞ and then select the set of modes fu1;…;umg,
whereV will depend explicitly on projections of u onto these
modes. It is necessary to include all modes with positive
eigenvalues at the given ðRe; LÞ, so that κ < 0 in (8), and to
include enough stable modes that trajectories of the truncated
system da

dt ¼ f are bounded. Beyond this, there is freedom in
the number and choice of modes. For a fixed number of
modes, experimentation may be needed to determine which
mode set gives the strongest stability results.
To apply our method to 2D plane Couette flow, we first

solve the energy eigenproblem (5) as detailed in the
Supplemental Material [30]. The eigenproblem must be
solved anew for each L and Re considered, giving eigen-
functionswhose streamwisewave numbersα aremultiples of
2π
L . As an example, Fig. 2 shows eigenvalues and correspond-
ing eigenmodes for ðRe; LÞ ¼ ð240; 2Þ, a point in the
parameter regime where energy can grow transiently yet
our computations verify stability.
The four nested sets of eigenmodes fu1;…;umg that

were used to compute the stability results of Fig. 1 are
defined in the Fig. 2 caption. For each ðRe; LÞ and set of
modes, all tensors in (7) were computed numerically. We
then formulated the SOS computations described above,
searching for polynomials P and Ξ such that V was verified

to be a Lyapunov functional. The parser YALMIP [37,38]
was used to reformulate all SOS constraints as semidefinite
programs, which were then solved using MOSEK [39]. The
resulting P and Ξ have many terms, so we do not report
them here.
For each L and set of modes, the symbol plotted in Fig. 1

is the largest Re for which our SOS computations found a
valid quartic V. We expect the stability thresholds in Fig. 1
will continue to improve with an increase to the number of
eigenmodes (m) on which V explicitly depends in (3).
However, our computations for 13 modes are already
expensive. This prevents us from considering very large
L since the number of modes that would be needed grows
at least linearly with L. Thus the present version of our

FIG. 2. Energy stability eigenmodes for ðRe; LÞ ¼ ð240; 2Þ.
The top panel shows eigenvalues as a function of streamwise
wave number α. Shading indicates the minimum singular value of
a boundary constraint matrix B (cf. the Supplemental Material
[30]); black curves are zeros of this minimum, corresponding to
eigenvalues. Eigenmodes consistent with L ¼ 2 occur at multi-
ples of 2π

L , marked by black dots. The mode with the jth largest
eigenvalue among eigenmodes with wave number α ¼ 2πi

L is
labeled ði; jÞ. Bottom panels show streamlines for selected
modes. When i ≠ 0 we include two modes, shifted by a quarter
period in x, to span the relevant eigenspace. The 6-mode set
consists of the (0, 0), (0, 1), (1, 1), and (1, 2) eigenmodes. The 8-
mode set adds (2, 1), the 12-mode set adds (2, 2) and (3, 1), and
the 13-mode set adds (0, 2).
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method cannot apply to arbitrary-L perturbations in very
long domains, although it surpasses the energy method for
perturbations up to whatever period is computationally
tractable. Aside from adding modes, stability thresholds
could be improved by raising the polynomial degree of V,
but sextic V demand much larger computational cost and
memory footprint.
As an independent check that the V constructed by our

SOS computations decrease monotonically in time, we
numerically integrated (1)–(2) for 2D Couette flow using
the code Dedalus [40], starting from 104 random initial
conditions (cf. the Supplemental Material [30]) in the
energy-unstable case ðRe; LÞ ¼ ð240; 2Þ. In all simulations
our V depending on 13 modes decreased monotonically,
whereas E increased transiently in 7 simulations.
In summary, we have presented a general method for

constructing polynomial Lyapunov functionals to show
global stability of fluid flows. It may be used to surpass
the many conservative results derived using energy (or other
quadratic integrals) to which past studies of fluid stability
have been confined. Our approach is more technical than the
energy method but can be implemented using modern
computational tools of polynomial optimization. We have
verified stability for 2D plane Couette in a regime where
energy grows transiently. This improves on a century-old
stability criterion of Orr, at least for perturbations whose
streamwise periods are not too large. As far as we know, this
is the first global stability result for any flow that is stronger
than what can be shown using the energy method or its
generalizations to other quadratic integrals. The natural next
step is to apply the same approach to 3D perturbations of
plane Couette flow or another 3D flow where the energy
method is overly conservative, such as pipe flow. The
procedure will be the same as in the present 2D example,
only with greater technicality and computational cost.
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