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Here, we show that light can bring itself to a complete standstill (self-stop) via self-interaction mediated
by the resonant nonlinearity in a fully homogeneous medium. An intense few-cycle pulse, entering the
medium, may reshape to form a strongly coupled light-matter bundle, in which the energy is transferred
from light to the medium and back periodically on the single-cycle scale. Such oscillating structure can
decelerate, alter its propagation direction, and even completely stop, depending on the state of its internal
degrees of freedom. This phenomenon is expected to occur in the few-cycle strong-field regime when the
Rabi oscillation frequency becomes comparable with the frequency of the incoming light.
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Photons are particles which have zero rest mass and thus
cannot be at rest. This is, however, formally not fully true
for the light propagation in the medium, since the light-
matter interaction creates “dressed photons,” such as, for
instance, polaritons—joint oscillations of light and collec-
tive atomic dipole [1–3]. These dressed photons are quasi-
particles which do not have zero rest mass anymore. As any
nonzero-mass particles, they may have zero velocity in a
moving frame of reference, e.g., in a moving medium [4].
The group velocity of polaritonic wave packets can be

very close to zero near resonances of the medium [3,5–7].
To mitigate the absorption, which unavoidably appears at
resonances, specially designed multilevel systems exploit-
ing so called electromagnetic induced transparency (EIT)
[7] are used. Such EIT-based approaches allow us to
achieve impressive slowing down [8,9] up to several meters
per second [9]. Even more, the propagation can be
completely stopped [10–12] if the pump in the EIT scheme
is switched off, causing the polariton energy being stored in
the atomic population wave packet.
Absorption near resonances can be avoided also using

nonlinear light-matter interaction, namely so-called self-
induced transparency (SIT) solitons, such as 2π solitons
[13–21]. In a SIT soliton, the atomic ensemble makes a full
Rabi oscillation over the pulse duration, so that the energy
transferred to the matter and then fully returned back, so no
overall losses occur. This results in a slowing down, which
can be also very large for the long pulses. In “common”
two-level atoms the velocity can never be zero [17,18,21],
but this might be not true anymore for “artificial atoms,” for
instance ensembles of superconducting qubits [22].
In every case, we cannot expect that the velocity of very

short, in particular, few-cycle pulses, can be significantly

reduced using these methods. To make things worse, strong
few-cycle pulses propagating in resonant media experience
rather complex dynamics, including additional shortening
and huge spectral shifts away from the resonance [23–25],
to the frequencies which can be several times higher than
the resonant frequency [24].
In this work, we show that slowing down, complete stop

and even propagation direction reversal of a strong, single-
cycle optical pulse is possible in a fully homogeneous
resonant medium. The pulse is self-stopped in the course of
relatively slow evolution due to highly nonlinear interaction
of light with itself, mediated by the nonlinear medium. The
evolution is accomplished by a formation of a novel
localized structure, a dynamical, strongly coupled bundle
of light and matter oscillating in time on a single-cycle
scale with full exchange of energy between light and
medium. This structure can stay or move with a speed
of light depending just on its internal state, with the
standing configuration being even energetically preferable
over the moving one.
We describe propagation of light in a two-level reso-

nant medium using the nonlinear wave equation [20,21] for
the electric field Eðz; tÞ coupled to the Bloch equations
[20,21] for the density matrix of two-level atoms ρij,
fi; jg ¼ f1; 2g:

d
dt
ρ21ðz;tÞ¼−

ρ21ðz;tÞ
T2

þ iω12ρ12ðz;tÞ−
id12
ℏ

nðz;tÞEðz;tÞ;

ð1Þ

d
dt

nðz; tÞ ¼ −
nðz; tÞ − n0

T1

þ 4d12Eðz; tÞ
ℏ

Im½ρ12ðz; tÞ�; ð2Þ
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∂2Eðz; tÞ
∂z2 −

1

c2
∂2Eðz; tÞ

∂t2 ¼ 4π

c2
∂2Pðz; tÞ

∂t2 : ð3Þ

Here, n ¼ ρ11 − ρ22 describes the population inversion,
n0ðz; tÞ ¼ 1 is its value at the equilibrium, ω12, d12, T1, T2

are the transition frequency, dipole moment, the population,
and polarization relaxation times respectively, ℏ is the
reduced Plank constant, c is the speed of light in vacuum,
Pðz; tÞ ¼ 2N0d12Reρ12 is the atomic polarization, N0 is the
concentration of the two-level atoms. Neither slowly
varying envelope approximation nor rotating wave approxi-
mation are used in Eqs. (1)–(3), allowing us to model
pulses of arbitrary wave shape. Equations (1)–(3) are
widely used to study the coherent propagation of few-
cycle pulses in resonant media in different cases, including
SIT [24–34]. These equations were solved by the finite-
difference method coupled to the fourth order Runge-Kutta
method [35]. For the discussion of the generality of these
equations and possible materials to use see Supplemental
Material [36].
For the simulations, we assume the following para-

meters for the medium: layer length 3.2 μm, d12 ¼ 5 D,
T1 ¼ 1 ps, T2 ¼ 20 fs, ω12 ¼ 2.69 rad=fs, correspond-
ing to the transition wavelength λ12 ¼ 700 nm,
N0 ¼ 6.3 × 1022 cm−3. The initial pulse shape is given by

Eð0; tÞ ¼ E0 exp ð−t2=τ2Þ sin ½ω0t�; ð4Þ
with the pulse duration τ ¼ 2.33 fs, central frequency
ω0 ¼ ω12, and peak field amplitude E0 ¼ 1.656 ×
106 ESU.

The results of numerical simulations for those parame-
ters are shown in Fig. 1. It is seen that directly after the
entrance the field and inversion form an oscillating struc-
ture, which starts to decelerate and is fully stopped at
z ≈ 8λ12. The total energy in field EðtÞ ∝ R

E2ðz; tÞdz
oscillates quickly in time Fig. 1(c). The character of
propagation and dynamics of EðtÞ indicate three different
stages of evolution: at t ≈ t1 ¼ 18 fs fast oscillations of
EðtÞ are born; for t1 ≲ t≲ t2 ¼ 45 fs the average amount of
energy in the pulse remains approximately the same
whereas the pulse decelerates and stops; finally, for t≳ t2
the pulse remains standing whereas its energy E quickly
drops with time (nevertheless, the structure remains visible
and standing for remarkably extended time ≳100 fs, see
Supplemental Material [36]).
This general behavior is quite stable and can be repro-

duced for a broad range of the input pulse parameters. In
particular, in Fig. 1(c) (black line) we show the transmitted
power fraction Wout=Win [here WðzÞ ¼ R

E2ðz; tÞdt and
Wout andWin refer to the values ofW at the entrance and at
the output of the medium] vs the atomic density. Small
values of Wout=Win indicate that the light is trapped inside
the medium. We also see that the trapping z position
changes with N0 [orange curve in Fig. 1(c)]. More
examples for different parameters can be found in
Supplemental Material [36] and visualizations [40–42].
The spectrum [Figs. 1(e) and 1(f)] experiences signifi-

cant modification already soon after the entrance, well
before the self-stop occurs. In particular, in the region
between the entrance z ¼ 5.27λ12 and z ≈ 6λ12 the

(a) (b)

(c)

(e)

(d)

(f)

FIG. 1. Self-stopping light. (a),(b) Evolution of the fieldEðz; tÞ (a) of a short pulse entering a resonant medium, and its inversion nðz; tÞ
(b). After a reach transient dynamics the light self-stops at around z ≈ 8λ12. The points t1 and t2 indicate quantitative changes in the
dynamical regime. (c) Dynamics of the energy in the field EðtÞ. (d) The transmitted light fractionWout=Win (black line) and the position of
the stop point (orange line) as a function of the particle densityN0. (e) Evolution of the field spectrum Iðz;ωÞwith z. (f) Spectra Iðz;ωÞ at
certain z positions: solid black line: z ¼ 4λ12 (before the entrance); solid blue line: z ¼ 6.2λ12; solid orange line z ¼ 8λ12. For
comparison, also the spectrum of a conventional SIT soliton (black dashed curve), as well as the linear losses α (red solid line) normalized
to the maximum α0 and the linear group velocity vgrðωÞ (red dotted curve) in units of c for the small-signal situation are presented.
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spectrum experiences a quick dramatic shift from ω12 to
around 4ω12, after which it slowly moves down to around
2.5ω12. Such shifts were observed before in [23,24] and are
typically related to the pulse shortening dynamics.
Importantly, the strong spectral shifts make our pulse
strongly nonresonant already close to the entrance, which
alone makes it fundamentally different from the common
EIT- and SIT-based pulses, which are always pinned to the
resonance. Also, the pulse velocity is fully incompatible
with the one imposed by both the SIT soliton velocity and
the group velocity vgrðωÞ ¼ dω=dk dictated by the
dispersion curve kðωÞ shown in Fig. 1(f) and thus with
the EIT mechanism (see Supplemental Material [36] for
more details).
As one can see, the pulse shape also significantly

changes already soon after entering the medium. In
Fig. 2 we consider in more detail this initial stage of
evolution around t ≈ t1. Two half-waves of the initial pulse
approach each other and “collide” [Figs. 2(a)–2(c)], result-
ing in a stable solitary structure, which not only propagates
in space but also quickly oscillates in time with the half-
period T ≈ 0.44 fs. A half-period of such oscillation is
shown in Figs. 2(d)–2(f). This dynamics is very much
different from a typical SIT soliton propagation, which is

shown for comparison in Figs. 2(g) and 2(h). The latter is
obtained from an input pulse with the same parameters
except E0 which is in that case is 1.36 times larger, and
results in two independent 2π SIT solitons propagating
unchanged and with a constant velocity.
Therefore, we observe here a novel highly oscillating

solitary structure which we call a light-matter oscillon
(LMO). The term oscillon is often used to describe
oscillating solitary or close to solitary solutions in different
areas of physics [43–47]. In contrast to a SIT soliton, the
energy EðtÞ of LMO oscillates periodically in time,
indicating energy transfer between matter and light [see
Fig. 2(i)]. The relations between oscillations of E, P, and n
in time are very different between the LMO and SIT
[cf. Fig. 2(e) and inset to Fig. 2(i)]. In contrast to SIT, E and
P oscillate in antiphase, whereas n oscillates twice as fast as
E and has a phase shift π=2 to E, performing thus
oscillations −E → n → E → n → � � � which half-period
we denote as T.
The stopping process of LMO is detailed in Fig. 3. In the

region between ≈30 and ≈45 fs, the velocity of LMO
quickly decreases, performing yet several relatively slow
oscillations [Figs. 3(a)–3(c) and Fig. 4] whereas the fast
oscillations discussed above retain its period mostly

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. Formation of LMO near the entrance to the medium. (a)–(f) Evolution of the field (a), inversion (b), and atomic polarization
(c) on the scale of multiple (a)–(c) and half (d)–(f) of period of LMO oscillation. Horizontal line in (a)–(c),(i) marks t ¼ 18 fs as the
position where the collapse takes place and LMO is born. In (d)–(f), dashed lines indicate zeros of Eðz; tÞ. The consequent half-
oscillations of the field are displaced by Δz in space. For comparison, in (g),(h) the evolution of a more conventional SIT soliton
structure (two copropagating 2π solitons) is shown. (i) The dynamics of the energy in field EðtÞ for LMO (blue line) and the SIT soliton
(orange line). Inset in (i) shows the field (red solid line) inversion (red dashed line) and atomic polarization (red dotted line) in
dependence on time for one of the SIT solitons at z ¼ 5.8 μm. In (e), red lines show the time dependence of the field, polarization and
inversion for z ¼ 6.18 μm [to be compared with the SIT soliton case in (i)].
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unchanged. We observe, however, that the basic structure of
the oscillation cycle of LMO is somewhat modified.
Whereas in the beginning of the propagation Fig. 2(d)
every (half-)oscillation in time is accomplished by the shift
in z by Δz, at the position when the structure stopps, Δz
approaches zero Fig. 3(d). This leads us to the following
understanding of the dynamics (see also Fig. 4): the
“perfect,” “ideal” LMO has Δz ¼ 0 and does not move
(its velocity v ¼ 0). In the collapse event at the beginning
of propagation a “deformed” LMO is born, with Δz ≠ 0.
Because of this, by every oscillation half-period T in time
the structure advances by Δz in space. The velocity of the
structure must be thus v ¼ Δz=T. This is supported by
Fig. 4(b) where the velocity v computed via the evolution
of the center of mass (CM) of the pulse is compared with
the velocity given by Δz=T. Furthermore, we observe [see
Fig. 4(a)] that the “diffractive” energy of the field Hdiff ∝R ð∂zEÞ2dz (see more detailed definition in Supplemental
Material [36]) is higher for the deformed structure with
Δz ≠ 0 than for the nondeformed one. This leads to an
effective potential Heff ∝ a0Δz2, giving, from Hdiff [see
Fig. 4(a)], the oscillation frequency o0 ≈ 0.9 rad=fs. This
fits well to the dynamics of Δz as shown in Fig. 4(b) where
oscillations ofΔz are obtained with a pendulummodel with
energy Heff, additionally modified by a phenomenological
nonlinear nonpotential term to take into account corrections
at large Δz (see Supplemental Material [36] for details).
Thus, we conclude that oscillations of the velocity we
observe in Figs. 3(a)–3(c) and Fig. 4(b) for t ⪅ 46 fs are
indeed relaxation oscillations bringing the deformed LMO
(Δz ≠ 0) to its nondeformed state (Δz ¼ 0).
As the system approaches Δz ¼ 0 close enough (at

t ≈ t2 ≈ 49 fs), its dynamics is modified once more.
Although the basic LMO structure still remains (fast
oscillations E → n → −E → � � �) its internal spatiotempo-
ral structure becomes significantly more complex as seen in

(a) (b) (c)

(d) (e) (f)

FIG. 3. Details of LMO self-stopping dynamics. (a)–(c) The dynamics of the field (a), inversion (b), and atomic polarization (c) in the
range where it self-stops. (d)–(f) and insets to (a)–(c) show the dynamics of E, n, and P on the single-cycle scale near exemplary time
positions marked in (a) by dotted horizontal lines [t ≈ 35 fs (d)–(f) and t ≈ 46 fs [insets to (a)–(c)]. Solid lines in (a)–(f) show the
evolution of the center of mass (CM) of the field.

(a)

(b)

FIG. 4. Self-stopping of LMO as a relaxation to the energy
minimum. (a) The dependence of the diffractive energy Hdiff of
LMO in dependence on the displacement Δz. Dots show the
numerically calculated energies for every particular oscillation
tracked along the position of CM in Fig. 3, the solid orange line
shows the quadratic fit to the data points. The insets show the
undeformed LMO (Δz ¼ 0, having the minimal energy) as well
as deformed LMO (Δz ≠ 0, out of the energy minimum)
advancing by Δz every half-period T and thereby moving, at
the same time slowly relaxing to the minimum and thus to the
undeformed structure. (b) Blue dots: velocity v of LMO calcu-
lated from the CM curve in Fig. 3; orange circles: the velocity
suggested from the displacement as v ¼ Δz=T. Black dots
indicate the fit to the relaxation dynamics obtained from the
oscillator model following from the potential in (a) as described
in text.
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the insets to Figs. 3(a)–3(c), the overall CM movement
acquires fast quasiperiodic oscillations and the energy starts
to dissipate quickly [Fig. 1(c)], mainly due to the radiative
losses. Despite this, this more complex structure remains
standing on average until it is fully radiated away [see
Figs. 1(a) and 1(b) and Supplemental Material [36] ].
Finally, we find that the basic, undeformed (Δz ¼ 0)

LMO can be described analytically. Here, we only sketch
the derivation, with more details given in Supplemental
Material [36]. First, neglecting the z dependence and relax-
ation times in Eqs. (1) and (2), we obtain E ¼ −4πP and
thereby can solve Eq. (2), getting N ¼ N0 þ ð4π=ℏω12ÞP2.
These expressions show that E oscillates in antiphase to P
and N is two times faster than E and P thus giving the key
features of LMO [cf. Fig. 2(e)]. Furthermore, substituting
this formula back to the equation for P, we obtain the
equation for an anharmonic oscillator Ëþ a2Eþ bE3 ¼ 0,
a2 ¼ ω2

12 þ ð8πω12d212=ℏÞN0, b ¼ ð2d212=ℏ2Þ, which, as
known, have periodic solutions with the frequency
which in the first approximation is given by ω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
12 þ ð8πω12d212N0=ℏÞ þ ð3=2ÞΩ2

R

p
, where ΩR is the

Rabi frequency, giving ω=ω12 ≈ 5 for our parameters,
which is of the same order as the numbers we see in
Figs. 1(e) and 1(f).
In conclusion, we predict the existence of a novel

ultrashort structure, light-matter oscillon, in which light
and matter form a tightly connected bundle, oscillating on
the single-cycle scale. Self-stopping occurs because of the
slow evolution of the internal degree of freedom, the
displacement Δz, toward the energy minimum. It is a
fundamentally nonlinear self-interaction phenomenon, in a
strong-field single-cycle regime, thus in a certain sense
opposite to EIT or SIT, based on the resonant, long-pulse
dynamics.
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