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Leveraging cutting-edge numerical methodologies, we study the ground state of the two-dimensional
spin-polarized Fermi gas in an optical lattice. We focus on systems at high density and small spin
polarization, corresponding to the parameter regime believed to be most favorable to the formation of the
elusive Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superfluid phase. Our systematic study of large lattice
sizes, hosting nearly 500 atoms, provides strong evidence of the stability of the FFLO state in this regime,
as well as a high-accuracy characterization of its properties. Our results for the density correlation function
reveal the existence of density order in the system, suggesting the possibility of an intricate coexistence of
long-range orders in the ground state. The ground-state properties are seen to differ significantly from the
standard mean-field description, providing a compelling avenue for future theoretical and experimental
explorations of the interplay between spin imbalance, strong interactions, and superfluidity in an exotic
phase of matter.
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The relation between magnetism, superfluidity or super-
conductivity, and other complex orders in the low temper-
ature free energy landscape of strongly correlated quantum
many-body systems has attracted tremendous interest for
several decades. In conventional superconductors, magnet-
ism and superconductivity are believed to compete against
each other: weak magnetic fields are expelled from super-
conductors, while large magnetic fields destroy the super-
conducting order. An external magnetic field induces an
alignment of the electron spins, thus disrupting the standard
BCS pairing mechanism. The BCS state is known to be
energetically favorable in spin-balanced systems; however,
the pairing behavior in the presence of a spin polarization
remains less characterized and understood.
The earliest theoretical proposals addressing pairing in

spin-polarized systems date back at least to the work of
Fulde and Ferrell [1], and Larkin and Ovchinnikov [2], who
suggested an alternative to the BCS pairing mechanism that
leads to the formation of finite-momentum Cooper pairs.
Despite decades of theoretical and experimental efforts, the
energetic stability and precise characteristics of the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state have not been
conclusively determined, nor has there been any unambigu-
ous experimental detection. The quest to observe FFLO
order is an enduring challenge. There have been major
efforts in condensed matter systems: in organic super-
conductors [3–5], in the iron-based superconductor
KFe2As2 [6], and in the cuprates, in connection with a
possible pair-density-wave state [7–10]. The rapid advances
in ultracold quantum gases, which offer several significant

experimental advantages, have opened up a newavenue both
in the continuum [11] and in optical lattices [12]. Some
evidence of a FFLO state has been obtained in one
dimension [13], and intense experimental effort is underway
in two and three dimensions.
The underlying systems tend to be strongly interacting,

and the properties of the target state depend on a delicate
balance of competing quantum and many-body effects. To
date, relatively few works have addressed spin-polarized
systems with calculations beyond mean-field theory, among
them dynamical mean-field theory studies [14–16], several
quantum Monte Carlo calculations [17–19], and a recent
study using field-theoretical methods [20]. However, these
studies are either at low densities [19], the continuum limit
[17,18,20], or/and finite temperatures [16,18]. Because of the
scarcity of results and current limitations in computational
methods (e.g., accuracy in the level of approximation, access
to lower temperature, or large system sizes), uncertainty
remains in the nature, or even existence, of a FFLO state in
optical lattice systems. There is a strong need for robust,
accurate theoretical and computational results for guidance
and calibration in the effort to achieve conclusive exper-
imental detection of this elusive state.
In this Letter, we present a set of nonperturbative

numerical results that establish the stability and accurately
determine the ground-state properties of the FFLO state in
the attractive two-dimensional spin-polarized Fermi gas in
an optical lattice. We concentrate on the parameter regime
near half filling with small spin polarization, which is
an ideal candidate system for the detection of a FFLO
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superfluid, due to the enhancement of quantum fluctuations
associated with the reduced dimensionality, and the nesting
effects introduced by the optical lattice at high density [21].
This regime has been particularly challenging for numerical
many-body approaches. (The Hamiltonian can be mapped
to the repulsive Hubbard model via particle-hole trans-
formation, and half filling with small spin polarization
corresponds to the lightly doped þU model, which has
attracted unprecedented effort in the context of high-Tc
superconductivity and whose complete phase diagram
remains to be determined.) We carry out our study using
the constrained path auxiliary field quantum Monte Carlo
(AFQMC) technique [22], reaching lattice sizes containing
∼500 atoms. Leveraging recent methodological advances
[23], we are able to verify the independence of the results
from the choice of trial wave function that is used to
implement the constrained path gauge condition. This
internal self-consistency, coupled with a large body of
validation from prior benchmarks on the Hubbard model
[24–27], allows a high degree of confidence in the accuracy
of these state-of-the-art many-body computations. The
results provide an ab initio characterization of the FFLO
state via analysis of the bulk correlation functions; addi-
tionally, they suggest an intriguing intertwined long-range
density order.
Our starting point is the two-dimensional Hubbard

Hamiltonian with nearest neighbor hopping, modeling a
collection ofN p ¼ N↑ þ N↓ spin-1=2 fermions moving in
an optical lattice:

Ĥ ¼ −t
X

hr;r0i;σ
ĉ†r;σ ĉr0;σ þ U

X

r

n̂↑ðrÞn̂↓ðrÞ: ð1Þ

In Eq. (1), U=t < 0 is the attractive interaction strength, the
label r runs over the sites of a periodic supercell withN s ¼
Lx × Ly unit cells of squares with side length a, and n̂σðrÞ ¼
ĉ†r;σ ĉr;σ is the particle density operator with spin orientation σ
at site r. We work in units such that a ¼ 1 and t ¼ 1. We
focus on the spin-polarized case, which can be induced by
embedding the system in a Zeeman field, for example. In
practice, wework in the sector of theHilbert spacewith fixed
values of N↑ and N↓, corresponding to a finite spin
polarization p≡ ðN↑ − N↓Þ=N s. We measure the pairing
correlation function CΔðrÞ ¼ hΔ̂†ð0ÞΔ̂ðrÞi [where Δ̂ðrÞ ¼
ĉr;↓; ĉr;↑ is the on site pairing operator and the angular
brackets denote ground state averages] and its Fourier
transform; the density correlation function with the back-
ground subtracted CnðrÞ ¼ hn̂ð0Þn̂ðrÞi − hn̂i2; and the spin
correlation function, CSðrÞ ¼ hŜð0Þ · ŜðrÞi [where the spin
density operator is defined as ŜðrÞ ¼ P

α;βðσÞα;βĉ†r;αĉr;β with
σ denoting the Pauli matrices]. To probe the physics at the
bulk limit, we study large supercell sizes at given values of
the density n ¼ ðN↑ þ N↓Þ=N s and the polarization p > 0,
testing different aspect ratios of the supercell to detect

collective modes and extrapolating the properties to
Nσ → þ∞ and N s → þ∞.
Within AFQMC [22], the many-body ground-state wave

function of the system jΨ0i is sampled by implementing a
random walk in the manifold of Slater determinants, driven
by the imaginary-time evolution operator of the system. The
presence of a finite polarization breaks time-reversal sym-
metry, which leads to the emergence of the fermion sign
problem. The constrained path gauge condition is an exact
condition on the evolution of the overall sign or phase of
each Slater determinant during the imaginary-time propa-
gation. In practice it is most commonly implemented by
requiring that each Slater determinant maintain a positive
overlap with a given variational trial wave function jΨTi.
This results in a polynomially scaling algorithm but intro-
duces an approximation that becomes exact if jΨTi coin-
cides with the ground-state wave function. As mentioned
above, the technique has consistently performed at the
highest level of accuracy with simple trial wave functions.
In order to assess and minimize the bias due to the choice of
jΨTi, we systematically compare the results from calcu-
lations using an ensemble of trial wave functions. Among
these is the noninteracting wave function, as well as fully
optimized Hartree-Fock-Bogoliubov (HFB) wave functions
with different values of an effective interaction Ueff (as in
Ref. [25] in the realm of repulsive models). A robust FFLO
order is observed even when a noninteracting trial wave
function is used, and consistent results for the ground state
correlation functions are obtained with the different choices
of jΨTi, as we illustrate next.
In Fig. 1 we present a set of calculations of the pairing

correlation function CΔðrÞ (inset) and its Fourier transform
CΔðkÞ (main panel). The three different trial wave functions
used correspond to three qualitatively different variational
states, a free-fermion state, and two distinct HFB solutions:
one characterized by a commensurate pairing wave vector
[21] [i.e., Q ¼ ð0; πpÞ], and the other by an incommensu-
rate pairing wave vector, in this case Q ¼ ð0; πp=0.75Þ. In
the latter two, the variational results each show a prominent
peak at a different location, indicating a nonzero FFLO
order parameter hĉ↓ðkÞĉ↑ð−kþQÞi. Despite the use of
qualitatively distinct trial wave functions, AFQMC obtains
a modulated real-space pairing correlation function, with
the samewavelengths in each case, corresponding to highly
consistent pairing structure factors with a maximum at the
momentum characterizing the incommensurate HFB sol-
ution. The observation of a shallow maximum in AFQMC,
instead of a prominent peak, suggests that the pairing
mechanism in the many-body state is more nuanced than
the simplest description of a single value for the center-of-
mass momentum in the FFLO state.
As noted earlier, we focus on the region of the density-

polarization phase diagram near half filling, with small to
moderate spin polarization. This region poses considerable
challenges for numerical approaches; for quantum
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MonteCarlo techniques, the sign problem can be very severe
here. Many-body calculations have thus far been away from
this regime and mostly limited to fairly dilute systems.
Before proceeding to this regime,we perform a calculation at
lower density (n ¼ 0.47 andp ¼ 0.07).As shown inFig. 2, a
clear long-range spatial modulation characteristic of the LO
state is seen. This result is consistent with a recent dia-
grammatic quantumMonte Carlo study [19], which found a
FFLO instability in this region of the phase diagram. The
Fourier transform of the pairing correlation function CΔðkÞ
(red circles in the main panel in Fig. 2) shows a shallow
maximum at the pairing wave vectorQ ¼ ð0; 0.1πÞ, a value
in very good agreement with the result from Ref. [19]. This
consistency between two very different ab initiomethods of
high accuracy is a strong corroboration of the FFLO order in
this system. In Fig. 2 we also show the HFB results for the
same system. Although the mean-field solution gives the
correct wavelength for the FFLO modulation, it overesti-
mates the strength of the real-space correlation by nearly 2
orders of magnitude. (In other parameter regimes, the HFB
solution can give an incorrect wavelength as well, as
suggested by the progression of the HFB results vs Ueff in
Fig. 1.) The structure factor results indicate differences in the
pairing mechanism, with HFB showing one prominent
pairing wave vector while AFQMC shows a more complex
momentum dependence.
We next study more systematically the characteristics of

the ground-state phases in the high-density regime. In
Fig. 3 we present results for a system with n ¼ 0.82,

p ¼ 0.07, and U ¼ −4.0. We use a large supercell, con-
sisting of 484 sites, in order to detect long-range collective
modes and minimize finite-size effects. The pairing corre-
lation, shown in the upper panels, displays a clear node
separating the regions with positive values of CΔðrÞ from

FIG. 2. Structure factor of the pairing correlation for a 4 × 36
lattice with N↑ ¼ 39, N↓ ¼ 29, and U ¼ −4. The AFQMC
results (red circles) display a shallow maximum, while the
mean-field results (green dashed line) display a sharp peak.
The vertical line indicates the leading pairing wave vector from
[19]. Inset: pairing correlations in real space, as computed with
AFQMC and mean field. Note the factor of 10 difference in the y
axis scales (with tick labels corresponding to AFQMC results on
the left and mean-field on the right).

FIG. 1. Structure factor of the pairing correlation for a 4 × 32
lattice with N↑ ¼ 57, N↓ ¼ 33, and U ¼ −4. We compare the
AFQMC results (dashed lines) obtained from three different trial
wave functions, the free-particle wave function (black squares),
and two HFB wave functions with an effective interaction
strength Ueff ¼ −2.5 (blue open circles) and Ueff ¼ −3.5 re-
spectively (red filled circles). The wave function with Ueff ¼
−2.5 is obtained from the incommensurate HFB solution, and the
wave function with Ueff ¼ −3.5 from the commensurate solu-
tion. The solid lines show the corresponding variational results.
Inset: corresponding modulated long-range behavior of the
AFQMC results for the pairing correlation in real space.

FIG. 3. Pairing and density correlations for a 22 × 22 system
with N↑ ¼ 217, N↓ ¼ 181, and U ¼ −4. Upper left: color plot of
sign ½CΔðrÞ�, to highlight the nodal structure. Upper right: CΔðrÞ
plotted along the horizontal line cuts indicated in the left panel.
Lower left: color plot of sign ½CnðrÞ�. Lower right: CnðrÞ plotted
along the horizontal line cuts indicated in the left panel.
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those with negative values, and revealing a long-range
modulated behavior that signals the existence of a pair-
density wave in the system. We observe that the pair-
density wave in this case is of LO form with pairing wave
vectors Q oriented along the x and y directions. (The
rotational symmetry of this state can be broken with the
choice of a HFB trial wave function with a single Q along
either x or y, which results in a many-body ground state
with pairing order along the same direction as the HFB
solution.) In this system the most prominent wave vector of
the modulation is jQj ≃ 0.09π; however, similar to the case
illustrated in Fig. 1, the structure factor displays a broad
maximum.
In the absence of spin polarization, the system is known

to exhibit a supersolid order at half filling [28–31], where
s-wave pairing coexists with a checkerboard density
modulation. Away from half filling, the supersolid order
is believed to disappear rapidly. In the lower panels of
Fig. 3, results are shown for the density correlation function
corresponding to the same polarized system. In the long-
range behavior of CnðrÞ we see a clear checkerboard
density pattern, as in the supersolid phase at half filling
with no spin polarization, but with a nontrivial modulation
pattern superimposed, which appears to show phase-flip
lines roughly coincident with the location of the node of the
pairing correlation function. The spin correlations, on the
other hand, are nearly uniform and do not show long-range
magnetic order. These results suggest a complex inter-
twined order, where the long-range pairing order appears to
coexist, or compete, with an interesting modulated density
order. The existence of these intertwined orders is likely
closely connected to the pairing mechanism which, as our
results indicate, may involve more than a single magnitude
pairing wave vector. Further investigations are needed for
better characterization and understanding. We comment
that the nodal structure in the pairing correlation function
shows an intriguing similarity to the superfluid order
parameter found in ferrons [32]. However, ferrons are
characterized by an inhomogeneous spin density in the
nodal region, whereas we find no evidence of spin order in
these systems.
We complement our investigation with the study of the

spin-resolved momentum distribution of the system
nσðkÞ ¼ hĉ†σðkÞĉσðkÞi, which is shown in Fig. 4. The left
panel shows color plots for both majority and minority
spins, while the right panel shows cuts of nσðkÞ along two
different directions. The left panel also displays the
corresponding occupied wave vectors in the noninteracting
ground state, with the right panel showing the Fermi
surfaces as vertical lines. From the color plot, the reor-
ganization is evident near the Fermi surface to favor pairing
with finite center-of-mass momentum in the x or y
direction. A relatively smooth momentum distribution is
seen in the interacting system. In particular no breaches are
evident in nσðkÞ in the flattened regions in a neighborhood

of the “node” ð�π=2;�π=2Þ; thus a breached pair super-
fluid [33] does not appear to be stable in this regime. In
addition, no strong anisotropy is evident in the momentum
distribution, indicating that a deformed Fermi surface
superfluid state [34,35] is likely not stable in this regime
either.
In summary, we have performed extensive AFQMC

studies of the ground state of the two-dimensional spin-
polarized attractive Fermi gas in an optical lattice. We study
the regionof thephase diagram lightly doped fromhalf filling
with small spin polarization, which is particularly challeng-
ing to treat numerically. Our results offer a beyond mean-
field theory examination of the stability of the FFLO state in
this system and systematic characterization of its properties.
We find clear signatures of the FFLO state using both a
translationally and rotationally invariant free-fermion trial
wave function, which includes no pairing or charge order,
and an ensemble of HFB wave functions, which explicitly
break symmetry and include pair-density waves. These high-
accuracy many-body results will provide guidance and
calibration for experimental searches for the elusive FFLO
state, in particular in the rapidly progressing field of ultra cold
atoms in optical lattices.
Our results also uncover the possibility of intertwined

orders in the system, comprising a nontrivial density
modulation which appears to coexist, in cooperation or
competition, with the superfluid order. Such a magnetic
superfluid phase with modulated density would be an
intriguing and exotic state of matter. Experimental and
additional theoretical studies would be invaluable to better
understand its nature. Via a particle-hole transformation,
our results can be mapped to the repulsive (þU) Hubbard
model with finite doping and spin imbalance, which
continues to receive intense attention in the context of
unconventional superconductivity in the cuprates.

FIG. 4. Momentum distributions. Left: majority (top) and
minority (bottom) momentum distributions are shown by the
color maps. The circles indicate the occupied momenta in the
noninteracting state. Right: values of n↑ðkÞ and n↓ðkÞ along two
cuts, kx ¼ 0 (solid lines) and the diagonal kx ¼ ky (dashed lines),
as illustrated on the left. The vertical lines indicate the non-
interacting Fermi surfaces. The system is a 22 × 22 site periodic
supercell with N↑ ¼ 217, N↓ ¼ 181, and U ¼ −4.
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