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With the tremendous accomplishments of RHIC and the LHC experiments and the advent of the future
electron-ion collider on the horizon, the quest for compelling evidence of the color glass condensate (CGC)
has become one of the most aspiring goals in the high energy quantum chromodynamics research. Pursuing
this question requires developing the precision test of the CGC formalism. By systematically implementing
the threshold resummation, we significantly improve the stability of the next-to-leading-order calculation in
CGC for forward rapidity hadron productions in pp and pA collisions, especially in the high pT region, and
obtain reliable descriptions of all existing data measured at RHIC and the LHC across all pT regions.
Consequently, this technique can pave the way for the precision studies of the CGC next-to-leading-order
predictions by confronting them with a large amount of precise data.

DOI: 10.1103/PhysRevLett.128.202302

Introduction.—The gluon saturation phenomenon [1–6],
predicted by the small-x framework, which is also known
as the color glass condensate (CGC) formalism, has been an
intriguing forefront research topic. A lot of experimental
and theoretical research efforts around the globe have been
devoted to this cutting-edge research frontier. Besides, in
the upcoming era of the electron-ion collider (EIC) [7–10],
probing the emergent properties of ultradense gluon has
become one of the key fundamental questions that the EIC
sets out to address.
CGC is an effective formalism in quantum chromo-

dynamics (QCD) which describes the novel nonlinear
dynamics of low-momentum gluons inside a hadron.
These low momentum gluon degrees of freedom are
generally referred to as the small-x gluons, with x being
the longitudinal momentum fraction. First, color sources
such as large-x quarks and gluons inside fast-moving
hadrons emit a large number of small-x gluons [11,12].
Usually, we introduce the saturation momentum QsðxÞ at
given x to characterize the typical size of soft gluons.
Because of the rise of the gluon density, QsðxÞ increases at
low x so that the corresponding gluon size becomes smaller
in the transverse space and more gluons can fit into a

confined transverse region. This nonlinear dynamics can
be captured by the Balitsky-Kovchegov and Jalilian-
Marian–Iancu–McLerran–Weigert–Leonidov–Kovner
(BK and JIMWLK) equation [13–18].
In high-energy collisions, small-x gluon degrees of

freedom are unlocked and measured in terms of final state
hadrons. To search for the experimental evidence of gluon
saturation among existing data [19–28] and prepare for the
future EIC precision studies, it is important to develop next-
to-leading order (NLO) computations in the CGC formal-
ism and achieve an accurate description of data collected
from various kinematic regions.
Among many different physical processes studied at

RHIC and the LHC, the calculation and measurements of
the single forward hadron production in proton-nucleus
collisions (or deuteron-nucleus collisions at RHIC),
pðdÞ þ A → hðy; pTÞ þ X, have attracted a great deal of
attention [29–49]. In the forward region, the projectile
proton (or deuteron) can be viewed as a relatively dilute
object that probes the ultradense gluon fields in the
nuclear target [30,36,37,50,51]. Experimentally, the evo-
lution of the nuclear modification factor RdAu [19,20]
from midrapidity to forward-rapidity regions is consid-
ered the evidence [39,52–55] for the onset of gluon
saturation. The measured RdAu is computed from the
hadron spectra in deuteron þ gold collisions normalized
by the spectra in pp collisions times the number of binary
collisions, and RdAu in forward rapidity regions is found to
be suppressed.
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In terms of the perturbative expansion, the corresponding
cross section can be schematically cast into

dσ
dyd2pT

¼
Z

xpfaðxpÞ ⊗ DaðzÞ ⊗ F
xg
a ðk⊥Þ ⊗ Hð0Þ

þ αs
2π

X
a;b¼q;g

Z
xfaðxÞ ⊗ DbðzÞ ⊗ F

xg
ab ⊗ Hð1Þ

ab ;

ð1Þ

where the first term stands for the leading order (LO)
contribution first computed in Refs. [30,56] and the second
term represents the NLO corrections derived from one-loop
diagrams. In our framework, the full NLO contribution
includes the contributions computed in Ref. [36,37] and the
additional kinematic constraint corrections given in
Ref. [45]. The kinematic variables are defined as follows,
xp ¼ ðk⊥=

ffiffiffi
s

p Þey, xg ¼ ðk⊥=
ffiffiffi
s

p Þe−y, pT ¼ zk⊥ with k⊥
and z being the parton transverse momentum and the
longitudinal momentum fraction of produced hadron with
respect to its original parton, respectively.
The LO production in various channels and the con-

tribution together with running coupling effects have been
calculated extensively in Refs. [32,33,35,38,41,42,57–59],
and part of the NLO contributions are studied in
Refs. [34,56]. To obtain the full analytical expressions of
the NLO corrections, one needs to evaluate all of the real
and virtual one-loop diagrams and remove various types of
divergences, as demonstrated in Refs. [36,37]. First, we
subtract the so-called rapidity divergences and absorb them
into the evolution of the dipole scattering amplitude
associated with the dipole gluon distribution F xgðk⊥Þ.
This procedure reproduces the well-known BK equation
[13,14] and allows us to resum the small-x large logarithms
systematically. Second, one can gather all the residual
collinear divergences and remove them through the
redefinition of collinear parton distribution functions
(PDFs) xfðxÞ or/and fragmentation functions (FFs)
DðzÞ. Eventually, the resulting finite NLO corrections,
which are simplified in the large Nc limit and denoted as

Hð1Þ
ab in Eq. (1), can be numerically evaluated.
The direct evaluation of the complete NLO cross section

yields a good agreement with experimental data [19,20]
from RHIC for forward rapidity hadron production in the
low-pT region. However, the NLO result drastically turns
negative in the high pT region [40]. When the kinematic
constraint corrections are included [45], the negative NLO
cross-section issue can be slightly mitigated but not entirely
resolved. In usual perturbative QCD calculations in the
collinear factorization, similar issues occur as well for
various processes. It indicates that large (and mostly

negative) logarithms hidden in Hð1Þ
ab become important in

the high pT region. In particular, in our case with the
forward rapidity hadron production, the threshold

logarithms cause the breakdown of the perturbative expan-
sion, and they should be resummed in order to restore the
predictive power of our calculation in the region of interest.
The quest for positivity in this NLO CGC calculation has

sparked a lot of interest. Over the last seven years, there
have been a lot of studies [43–49,60–65] dedicated to
addressing the issue caused by the large negative NLO
corrections. We believe that the threshold resummation is
one of the feasible solutions to this issue, and the
resummation technique developed in this work can also
be useful in the study of other NLO calculations [66–75] in
CGC. In addition, there have been some further theoretical
efforts [76–79], which go beyond the eikonal approxima-
tion and compute the next-to-eikonal corrections for this
process.
Implementation of the threshold resummation.—To

tackle the issue of the large negative corrections at
NLO, we need to analytically extend the applicability of
the NLO CGC calculation from the low-pT region to the
high-pT region, thus obtain reliable numerical predictions
for measurements at both RHIC and the LHC, and therefore
better understand the transition from the ultradense regime
to the dilute regime. First, to illustrate the origin of the
threshold logarithms in the NLO corrections, let us discuss
the appearance of the large NLO corrections that cause
the issue in the sufficiently forward rapidity region when
pT ≫ Qs [40,45]. In fact, this indicates that the issue
occurs when hard scatterings dominate in this region,
where the corresponding events are approaching the kin-
ematic threshold. Second, we identify and extract the large
logarithms in the momentum space where the numerical
computation of the NLO correction can be performed more
efficiently. In the end, we introduce the resummation
scheme, which allows us to take the higher-order large
logarithms into account and restore the predictive power of
the one-loop calculation for this process in the CGC
framework.
To see this clearly and intuitively, let us recall the

kinematics at NLO [36,37] and define the hadron longi-
tudinal momentum fraction τ ¼ ðpT=

ffiffiffi
s

p Þey, which is
equivalent to τ ¼ xξz with ξ being the remaining momen-
tum fraction of a parton after emitting one gluon. In the
forward rapidity region (y > 0), as the hadron pT increases,
τ starts to approach 1. That is to say that we are approaching
the threshold region where x, z, and ξ are all forced to
approach 1. In this case, the phase space for the real gluon
emission is severely limited since there is not much
longitudinal momentum left for the radiation near the
threshold. In contrast, there is no constraint imposed on
the virtual graphs. As a result, after canceling singularities
between real and virtual graphs, large logarithms appear in
the NLO corrections. These large threshold logarithms are
the culprits that upset the convergence of the αs expansion
in our NLO calculation. Two formulations of the threshold
resummation within the CGC framework have been
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proposed earlier in Ref. [62] and Refs. [64,65], respec-
tively. In this Letter, our study follows closely with the
former approach.
Our strategy is described as follows. Initially, the NLO

corrections [36,37] were derived in the coordinate space
where the physical interpretation for gluon saturation is
manifest. However, due to the oscillating behavior of the
complex phase factor in the coordinate space expression, it
is challenging to evaluate them numerically, especially in
the high pT region. Therefore, we later transform the
complete NLO cross sections, including the kinematic
constraint corrections [45] into the momentum space,
yielding much better numerical accuracy. In the coordinate
space, we can identify two types of logarithms [62,80]

single log : ln
k2⊥
μ2r

; ln
μ2

μ2r
; double log : ln2

k2⊥
μ2r

; ð2Þ

where μr ≡ c0=r⊥ with r⊥ being the dipole size and
c0 ¼ 2e−γE . After integrating over r⊥ in the coordinate
space, these logarithms coupled with plus functions gen-
erate large contributions in the threshold region when k⊥
(or pT) becomes much larger than typical value of μr.
Therefore, in the momentum space, we need to introduce an
auxiliary semihard scaleΛ, much larger than the QCD scale
ΛQCD, to extract these large logarithms for the resummation
purpose. The scale Λ characterizes the typical transverse
momentum scale carried by semihard gluons due to the
Sudakov radiation and small-x effect. In the momentum
space, the single and double logarithmic terms can be
correspondingly cast into [45,81,82]

single log : ln
k2⊥
Λ2

þ I1ðΛÞ and ln
μ2

Λ2
þ I1ðΛÞ; ð3Þ

double log : ln2
k2⊥
Λ2

þ I2ðΛÞ; ð4Þ

where I1;2ðΛÞ represent the residual matching functions. At
one-loop order, our results are independent of the choice of
the auxiliary scale Λ. The essential steps of the derivations
can be found in Supplemental Material [83].
Usually, in the collinear factorization, the threshold

logarithms are resummed in terms of the resummation
of the “plus” distributions in the Mellin moment space
[84–87]. The technique employed in the CGC framework is
slightly different since the relevant gluon distribution is
transverse momentum dependent. The threshold logarithms
in forward hadron productions can be cast into two parts:
the soft and the collinear parts. The soft part such as single
and double logs of lnðk2⊥=Λ2Þ, associated with the
soft gluon emission, can be resummed by the Sudakov
factor SSudðk⊥;ΛÞ. As to the collinear part (lnðμ2=Λ2Þ),
there are two similar approaches to deal with the corre-
sponding resummation. The first method is to develop a

renormalization group equation [whose solution is
ΔðΛ2; μ2;ω≡ ln 1=ξÞ] in the momentum space to analyti-
cally resum logarithms of lnðμ2=Λ2Þ combined with the
above soft part in the threshold limit with ξ → 1. This
scheme is akin to the method first developed in the
pioneering study [88–91] for the deep-inelastic structure
function using the soft-collinear effective theory.
Alternatively, since the above collinear logarithms are

associated with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) splitting functions, they can be resummed
with the help of the DGLAP evolution of the PDFs and FFs
by resetting the factorization scale [62] from μ to the
auxiliary scale Λ in the LO resummed terms and then the
resummed formula reads

σ ¼
Z

xfaðx;ΛÞ ⊗ Daðz;ΛÞ ⊗ F
xg
a ðk⊥Þ ⊗ Hð0Þ ⊗ e−SSud

þ αs
2π

Z
xfaðx; μÞ ⊗ Dbðz; μÞ ⊗ F

xg
ab ⊗ Hð1Þ

ab ðμ;ΛÞ:

ð5Þ

In fact, this choice of the factorization scale μ for LO cross
section is similar to the conventional practice of setting
μ ¼ μb in the Collins-Soper-Sterman formalism [92].
These two resummation schemes are theoretically equiv-
alent, and they yield similar numerical results. The resum-
mation scheme is not unique, and one can certainly develop
a similar scheme in the coordinate space as well.
Let us compare the resummed formulas as in Eq. (5) to

the original NLO results in Eq. (1). Essentially, we take out
the logarithmic term hidden in Hð1Þ

ab from Eq. (1), and
extract the threshold logarithms which are resummed in
Eq. (5). Then, the terms that are proportional to the residual
matching functions I1;2ðΛÞ are put back into the new NLO

coefficientHð1Þ
ab ðμ;ΛÞ. Initially, Eq. (1) only depends on the

factorization scale μ. After the implementation of the
threshold resummation, Eq. (5) now depends on the choice
of the factorization scale μ and the auxiliary scale Λ. Both
scale dependences cancel to the one-loop order (NLO), and
the residual scale dependences, which start from the two-
loop order in this process, are due to the truncation of the
perturbative expansions. Loosely speaking, the threshold-
Sudakov resummation can effectively decrease the negative
contributions at the one-loop order and therefore makes the
resummed result positive.
In principle, the cross section would be independent of

both μ and Λ if all-order results were included. In practice,
we can estimate the size of higher-order corrections by
varying these two scales. Furthermore, to minimize the
higher-order corrections, the “natural” choice of these two
scales should be adopted. In the collinear part, the hard
scale Q (∼2k⊥ when k⊥ is sufficiently large) sets the scale
for the factorization scale μ. As to the semihard auxiliary
scale Λ, the “natural” choice should be μr ¼ c0=r⊥, which
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depends on the typical value of r⊥ when r⊥ is integrated
over. Following Refs. [92–94], we use the saddle point
approximation to locate the dominant region of the r⊥
integral, thus estimate the physical value of Λ via the
running coupling prescription

Λ2 ≈max
�
Λ2
QCD

�ð1 − ξÞk2⊥
Λ2
QCD

� CR
CRþNcβ0

; Q2
s

�
; ð6Þ

where β0 ¼ ð11=12Þ − ðnf=6NcÞ. CR is the Casimir factor,
which gives CF and CA for the quark and gluon channel,
respectively. In the gluon channel, the saturation momen-
tum Q2

s is increased by a factor of Nc=CF as compared to
the quark channel. We set Λ2 ¼ Q2

s when the saturation
effect is strong, while ð1 − ξÞk2⊥ ∼ ð1 − τÞp2

T becomes the
dynamical scale near the threshold region [90,91].
Numerical results.—In the numerical evaluation, we use

the NLO Martin-Stirling-Thorne-Watt (MSTW) PDFs [95]
and NLO de Florian-Epele-Hernandez-Pinto-Sassot-
Stratmann FFs [96] together with the one-loop running
coupling. For the dipole gluon distributionF

xg
a ðk⊥Þ, we use

the modified McLerran-Venugopalan model [4,5,97–100]
with parameters given by the Set h in Table I of Ref. [101]
as the initial condition, solve the running-coupling BK
equation numerically in the coordinate space [101–110],
and then obtain the numerical inputs in the momentum
space via Fourier transform. As shown in Ref. [41], the
numerical results are sensitive to the above inputs espe-
cially the initial condition for F

xg
a ðk⊥Þ. To universally

describe the data from RHIC and the LHC, it is important to
choose proper initial conditions, include the NLO correc-
tions, and implement the threshold resummation near the
kinematic threshold.
As shown inFig. 1,with the proper choices of theΛ2 scales,

the improved NLO CGC calculations with the implementa-
tion of the threshold resummation, which are labeled in red
gridded bands, agree with the data collected at RHIC and the
LHC in both lowandhighpT regions. Similar toRef. [87], the
edges of the various bands were computed by varying Λ2 in
the appropriate ranges and μ2 ¼ α2ðμ2min þ p2

TÞ with
α ¼ 2 ∼ 4. To ensure that μ2 is not too small in the low
pT region, a minimum value μmin ¼ 2 GeV is used. In the
high pT region, the factorization scale is set by the hard scale
Q, which is estimated to be at least twice the parton transverse
momentum kT . Therefore, the proper value of μ should be
larger than 2pT in this region.
Compared to the one-loop results marked in orange

bands, the resummed results, which are depicted in red
grids, are roughly unchanged in the low-pT region. In fact,
when Λ is set to the value around μ ∼ k⊥, the resummation
formulation naturally reduces to the one-loop result since
the threshold logarithms become small in this limit.
Meanwhile, the resummation significantly improves the
stability of the NLO calculation for the high-pT spectrum

with the values of the auxiliary scale Λ2 prescribed
by Eq. (6).
In addition, we compare our calculation with the latest

data measured by the LHCb Collaboration [28] in Fig. 2. In
the forward rapidity regions, LHCb measured the prompt
charged particle production in pPb and pp collisions at
5 TeV in five rapidity ranges around y ¼ 2.25, 2.75, 3.25,
3.75, and 4.2. Within the same framework, we obtain a
good agreement with the hadron spectra measured in
both pPb and pp collisions for all rapidity windows.
The impact of the resummation at the LHCb regime is less
pronounced than that at RHIC since the kinematic range of
this measurement is still far away from the threshold
boundary.
Eventually, this allows us to calculate the nuclear

modification factor, which is defined as

RpPb ¼
1

A

d2σpPb=dpTdy

d2σpp=dpTdy
: ð7Þ

The suppression of this factor RpPb reflects the onset of the
small-x evolution effect and the gluon saturation phenome-
non. As we increase the rapidity or decrease the transverse

FIG. 1. Theoretical results computed in the CGC framework
compared with the BRAHMS data [19]. Many additional plots
are provided at the end of the Supplemental Material [83].
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momentum, more suppression in RpPb as shown in Fig. 2
can be observed as the indication of strengthening of the
small-x evolution effect [52]. In the high pT region, RpPb

approaches unity as the small-x effect attenuates.
Conclusion.—By incorporating the threshold resumma-

tion in the CGC formalism, we extend the applicability
regime of the CGC NLO calculation for forward hadron
productions to the large transverse momentum region.
Furthermore, the resummation allows us to reliably com-
pute the hadron spectra and corresponding nuclear modi-
fication factor from low pT to high pT regions, and thus
enables us to quantitatively understand the transition from
the gluon saturation regime to the dilute regime. This study,
which may serve as a benchmark example for other NLO
CGC calculations, demonstrates that the NLO phenom-
enology is essential to test the CGC formalism and collect
compelling evidence for the onset of gluon saturation. Last,
the resummation formulation developed in this Letter can
also shed light on other higher-order calculations in the
CGC framework.
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