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Optimal transport theory has recently re-emerged as a vastly resourceful field of mathematics with elegant
applications across physics and computer science. Harnessingmethods from geometry processing, we report
on the efficient implementation for a specific problem in cosmology—the reconstruction of the linear density
field from low redshifts, in particular the recovery of the baryonic acoustic oscillation (BAO) scale. We
demonstrate our algorithm’s accuracy by retrieving the BAO scale in noiseless cosmological simulations that
are dedicated to cancel cosmic variance; we find uncertainties to be reduced by a factor of 4.3 compared with
performing no reconstruction, and a factor of 3.1 compared with standard reconstruction.

DOI: 10.1103/PhysRevLett.128.201302

Introduction.—Linear perturbations in the primordial
Universe propagate as sound waves through the photon-
baryon plasma until light and matter decouple. In a balance
of radiation pressure and gravity, the baryon-to-photon and
the matter-to-radiation ratios define a correlation length that
is imprinted as a distinct feature onto the density fields,
detectable in both the cosmic microwave background at
early and the large scale structure (LSS) at late times [1–3].
However, nonlinear clustering of galaxies at low redshifts
distort this imprint and therewith impedes unbiased detec-
tion [4], calling for methods to undo these nonlinear effects,
to “reconstruct” the linear density field, and thereby to
enable accurate and precise measurement [5]. This so-
called baryon acoustic oscillation (BAO) scale serves as a
unique tool to map the expansion history of the Universe,
and hence has taken up a central role in cosmological
analyses; most notably, its detection [6,7] has provided
constraints on standard quantities such as the Hubble
constant and dark energy density [8], with promising
capabilities to, with future observations, even constrain
more nuanced theories of, e.g., light degrees of freedom [9].
Therefore, and especially in light of present and upcoming
large galaxy surveys [10], the development of fast, accu-
rate, and scalable reconstruction methods is highly relevant
to optimizing the yield of LSS studies. As a prime example
of the wide and successful applicability of modern optimal
transport theory, this Letter promotes a recent implemen-
tation of one such method.
Optimal transport theory describes mappings between

probability measures that minimize a total cost function
while satisfying a volume conservation constraint [14,15].
Recent advances in both the mathematical and algorithmic
aspects of the theory paved the way for breakthroughs in
various fields, such as artificial intelligence, economics,

meteorology, biology, and physics—due to the universality
of processes minimizing an action. In the context of this
work, we exploit natural connections between optimal
transport and physics [16,17]: the to-be-minimized quantity
and volume conservation are an action integral and the
continuity equation, respectively. The Lagrange multiplier
associated with the constraint turns out to be the gravita-
tional potential. Drawing from and building on all these
advances, we recently developed a deterministic algorithm
[17] that efficiently reconstructs the sought-for linear
density field. After having fully characterized its behavior
in Ref. [17], we here focus on the accuracy with which it
retrieves the BAO scale by applying it to noise-free cosmic
variance canceling cosmological simulations generated
with the FastPM [18] algorithm.
This Letter recapitulates the mathematical basis of our

method, illustrates its particular application to cosmologi-
cal density field reconstruction, and finally showcases its
excellent results in comparison with standard recon-
struction by the use of noise-free cosmic variance canceling
cosmological simulations.
Monge-Ampère-Kantorovich reconstruction.—Monge-

Ampère-Kantorovich (MAK) reconstruction uniquely de-
termines the Lagrangian trajectories of a given Eulerian
distribution of particle positions by solving an optimal
transport problem [17,19]. To this effect, consider self-
gravitating matter in an Einstein–de Sitter universe, where
particle trajectories are the solution to extremizing the
action I subject to the Poisson equation, mass conservation,
and appropriate boundary conditions,

I ¼ 1

2

Z
τF

τI

Z
V

�
ρjvj2 þ 3

2
j∇xϕj2

�
τ3=2 d3x dτ: ð1Þ
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Here, x ¼ xðq; τÞ are the trajectories in Lagrangian coor-
dinates of particles initially at q, v is the Eulerian,
comoving velocity field, ρ is the Eulerian density field,
and ϕ is the gravitational potential. Serving as a time
variable, τ denotes the amplitude of the growing linear
mode, normalized such that initially τI ¼ 0 and finally
τF ¼ 1. Correspondingly, the final density ρðτFÞ is con-
sidered to have evolved from an initially uniform state,
ρðτIÞ ¼ 1. At final time τF, we suppose that the density
field is clustered into a set of points ðxiÞNi¼1 with masses
ðmiÞNi¼1. Ultimately, we aim to recover the (linear) density
field at high redshift, or τ ¼ τI þ ϵ, ϵ ≪ 1, from a low-
redshift, or present-time distribution of clustered matter.
In practice, this will require finding the optimal map
that assigns initial positions q to the input particle
positions xðq; τFÞ.
Linearizing around the stationary points of the action,

Eq. (1), one finds only the kinetic term to remain, resulting
in uniform rectilinear motion [20]. Interestingly, this case is
proven [21] to be equivalent to the L2 Monge-Kantorovich
optimal transport problem [22],

inf
xF

Z
V
ρðqÞjxFðqÞ − qj2 d3q; ð2Þ

inwhich the integrated squared distance isminimized, subject
to mass conservation, ρFðxÞ=ρIðqÞ ¼ det ½d3x=d3q�. In the
dual formulation of the problem, that exchanges the unknown
application xF with the mass conservation constraint, one
solves the Monge-Ampère equation for a scalar function Φ,
associated with the constraint, and called the Kantorovich
potential:

ρFðxÞ
ρIðqÞ

¼ det

� ∂2Φ
∂qi∂qj

�
; ð3Þ

The optimal assignment map q ↦ xFðqÞ turns out to be
uniquely determined as the gradient of Φ [23]. From the
second-order optimality condition, one can prove that Φ is a
convex function, which is interesting because it implies the
absence of shell crossing during structure formation: intui-
tively, onemay think of the velocity field as the normals to the
graph of Φ, and the normal vectors to a convex body do not
intersect. More formally, the proof is obtained by contra-
diction: the existence of a collisionwould imply an inequality
that would in turn contradict the convexity of Φ (details
in Ref. [17]).
It is interesting to express the optimization problem as a

function of physical quantities instead of Φ, using the
relation betweenΦ, the initial gravitational potential ϕI and
the final gravitational potential ϕF:

ΦðqÞ ¼ 1=2q2 − ϕIðqÞ; ð4Þ

ϕIðqÞ ¼ inf
x
½1=2jx − qj2 − ϕFðxÞ�: ð5Þ

The initial and final potentials ϕI and ϕF are mutually
related through the Legendre-Fenchel transform [Eq. (5)]
(the same one that converts between Lagrangian and
Hamiltonian mechanics). They turn out to be the solution
of the following optimization problem:

max
ϕI ;ϕF

K ¼
Z
V
ϕIðqÞρIðqÞdqþ

Z
V
ϕFðxÞρFðxÞdx; ð6Þ

where the functional K is called the Kantorovich dual.
While numerical methods for approximately solving the

Monge-Ampère [Eq. (3)] have been devised [24–26],
elegant algorithmic developments in computer science
allow for efficiently constructing exact solutions (see
Ref. [27] for a review).
Previous reconstruction methods that exactly solve the

Monge-Ampère equation [16,19] considered a discrete
version of the Monge-Kantorovich problem [Eq. (2)],
i.e., to find the permutation jðiÞ between a finite set of
N homogeneously distributed particle positions ðqjÞNj¼1 at
τI and their corresponding positions ðxiÞNi¼1 at τF that
minimizes

P
i jxiðjÞ − qjj2. Efficient combinatorial meth-

ods [28] avoid exploring the full set of N! possible
permutations; however, they still scale as ∼N2 logðNÞ,
rendering such algorithms increasingly unfeasible for larger
data sets. Moreover, using these combinatorial methods, it
is difficult to allocate a different mass mi to each point.
However, exploiting the variational nature of the Monge-

Kantorovich problem, the present semidiscrete approach
replaces this exhaustive combinatorial search by the opti-
mization of a well-behaved objective function, simulta-
neously making use of the geometric structure of the
setting: instead of representing the initial condition as a
discrete set of points ðqjÞNj¼1, we consider it as a con-
tinuum, while the density at τF is concentrated on a set of
points xi with the associated masses mi. Replacing ϕI by
its expression [Legendre transform of ϕF, Eq. (5)], the
Kantorovich dual K in Eq. (6) becomes

KðψÞ ¼
X
i

Z
Vψ
i

�
1

2
jxi − qj2 − ψ i

�
d3qþ

X
i

miψ i; ð7Þ

that depends on the vector ψ ¼ ½ϕFðxiÞ�N1 , and where the
subsets Vψ

i , also stemming from the Legendre-Fenchel
transform of ϕF, are defined by

Vψ
i ¼

�
q

����12jxi−qj2−ψ i <
1

2
jxj−qj2−ψ j; ∀ j≠ i

�
: ð8Þ

The regions Vψ
i are called Laguerre cells, and they form a

Laguerre diagram (more on this in [29–32]). Each Laguerre
cell Vψ

i corresponds to the region of space mapped to xi
through the reconstructed motion.
The vector ψ that determines the Laguerre diagram

can be obtained by maximizing the Kantorovich dual K
[Eq. (7)] subject to the constraint that no cell is empty
(Vψ

i ≠ ∅; ∀ i). Finally, one retrieves the gravitational
potential at τI through the Legendre transform of ψ :
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ϕðτI;qÞ¼ inf
xF

�
1

2
jq−xij2−ψ i

�
¼ 1

2
jq−xiðqÞj2−ψ iðqÞ; ð9Þ

where iðqÞ is the index of the Laguerre cell Vi that contains
q. In other words, maximizing KðψÞ is equivalent to
solving for the Kantorovich potential Φ in the Monge-
Ampère equation.
The Kantorovich dual K has two properties that are

important from the point of view of numerical optimization.
First, K corresponds to the lower envelope of a family of
affine functions, hence it is concave [29–32], which ensures
the existence and uniqueness of ψ . Second, by studying the
Taylor expansion of K in two configurations differing from
a combinatorial change in the Laguerre diagram, one
can observe that the terms up to second order match
[33], hence K is C2 smooth, which allows for an efficient
and convergent optimization [34]. It is the combination of
the two analytic properties of K (convexity and smooth-
ness) that allow replacing the expensive combinatorial
computation of previous methods with a Newton method
that exploits the first- and second-order derivatives of K to
efficiently minimize it.
Finally, each Laguerre cell Vψ

i at τI is mapped to its
corresponding point xi at τF. At an intermediate time τ the
trajectories of the mass elements can be deduced via a
Lagrangian perturbation theory (LPT) description, in our
case the Zel’dovich approximation [35]. This, in turn, can
be converted as a mass density on a Eulerian grid, as
depicted in Fig. 1 (see also Ref. [17]).
BAO reconstruction.—Baryonic acoustic oscillations

imprint a signature in the matter power spectrum by
periodically modulating the large-scale power at a frequency
corresponding to the sound horizon at decoupling [1].

Nonlinear gravitational evolution blurs and shifts this
feature [4], complicating reliable detection and interpreta-
tion, and for that reason, reconstruction algorithms were
devised that correct for such influences. In addition to
physical effects, finite survey volumes, both in simulations
and in practice, induce sample variance (so-called cosmic
variance) into the measured quantities due to a reduced
number of modes on these very scales. Since these
modulations can be seen as only small perturbations to
the bulk of the power spectrum, the variance is dominated
by the unmodulated power spectrum, suites of dedicated
N-body simulations can effectively cancel cosmic variance
for analyses that only target the BAO signal [36–38], e.g.,
to test reconstruction methods. In this view, we apply our
reconstruction algorithm [17] to the FastPM [18] simu-
lations of Ref. [39].
This suite of FastPM simulations is composed of pairs of

simulations initiated with the same random phases at
redshift z ¼ 9, yet with power spectra that differ by the
presence of the BAO feature, in the following referred to as
“wiggle” and “no-wiggle” power spectra, or PwigðkÞ and
PnwðkÞ. Each of the simulations traces 20483 particles in a
cube of 1380 h−1 Mpc side length from z ¼ 9 to z ¼ 0, and
saved at redshift z ¼ 0 as a particle sample. In order to keep
computing time low, we subsample only ∼1% of all
particles in each of the ten simulation pairs we consider,
resulting in about 85 × 106 particles per simulation. All
simulations follow a ΛCDM cosmology with parameters
from Ref. [40], which gives an expected BAO scale of
rthBAO ¼ 147.5 Mpc.
Beginning with these particles’ positions x at z ¼ 0, we

compute the density field [17] at z ¼ 9 as described in the
previous section and via the choice of an appropriate linear

FIG. 1. Semidiscrete Monge-Ampére-Kantorovich reconstruction. Illustration of the reconstruction’s flow beginning with an input of
point masses at τF (here z ¼ 0) that are mapped to their corresponding regions at τI (here z → ∞) from where they draw their mass
through gravitational collapse. The regions are the polyhedral cells defined by the Laguerre diagram as defined in the main body. In a
subsequent step the cells evolve until a time τF > τ > τI (here z ¼ 9) and according to a LPT description—in the present Letter the
Zel’dovich approximation. In the final step a mass density is expressed on a Eulerian mesh. The figure shows a tiny subset of a
reconstruction from AbacusCosmos, that comprises 9.7 × 106 Laguerre cells.
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growth factor [41]. Figure 2 demonstrates the effectiveness
of our reconstruction, where the relative differences,
dðkÞ ¼ PwigðkÞ=hPnwðkÞi − 1, of initial (z ¼ 9) and final
(z ¼ 0) power spectra are compared with those of our
reconstructed density fields, averaged over all ten simu-
lations. Our reconstruction’s excellent performance is
further highlighted by contrasting it against the result
obtained from so-called standard reconstruction [5,43],
visible through the agreement of initial condition and
reconstruction out to wave numbers k ≫ 0.15h−1 Mpc,
where discrepancies between initial condition and standard
reconstruction first appear.
In line with Ref. [37] we χ2 fit templates, mðkÞ, to the

power spectrum ratios to obtain estimates of the BAO
scale in each of the ten simulations. We define mðkÞ ¼
ek

2Σ2=2½PIC
wigðk=αÞ=PIC

nwðk=αÞ − 1� as the relative difference
of power spectra of the initial, linear density field, allowing
for a shift α ¼ r̂BAO=rthBAO of the BAO scale, and a
Gaussian damping Σ [45], and up-weigh small scales via
choice of the standard error σ2ðkÞ ¼ 2Var½dðkÞ�=
NmodesðkÞ, where NmodesðkÞ is the number of Fourier modes

that contributes to the computed power in each k bin. We
perform the fits over the full k range shown in Fig. 2, and
the best-fit values of α define the best-fit BAO scales r̂BAO
in each fractional power spectrum dðkÞ. Table I presents
biases and uncertainties in retrieving rthBAO in each of the
simulations and reconstructions. While comparison with
the theory value rthBAO (left columns) confirms and restates
more precisely the results of Ref. [17], the right columns
optimally and for the first time showcase our algorithm’s
accuracy and precision in reconstructing the BAO scale
from noiseless cosmological simulations, by subtracting
from each simulation the inherent BAO scale, rICBAO, before
determining mean and spread, thereby canceling cosmic
variance.
Because of the arising of shift terms in the nonlinear

power spectra [4,37,46], the BAO scale at z ¼ 0 appears
biased by ∼0.3%, in accordance with previous findings
[37,47,48]. This is accompanied by a ∼0.8% uncertainty
that reflects the blurring of the BAO peak that as well is
caused by nonlinear gravitational growth. Reconstruction
reduces this bias [46] as we too see in both MAK and
standard reconstruction, and further sharpens the BAO peak
increasing the precision with which r̂BAO is determined;
compared with the inherent uncertainty the simulations
carry at the final condition—including cosmic variance—
standard reconstruction improves the precision by a factor
of 1.5 while MAK reconstruction gives a factor of 2.4 of
enhancement. In an idealized scenario, without cosmic
variance, the factor 1.4 improvement of standard re-
construction is surpassed by MAK reconstruction by as
much as 4.3. In all cases we find a significant reduction of
the bias as well.
As elaborated in Ref. [17], subsample variance has

significant impact on the overall error budget. Both
shot noise and subsample variance are virtually removed
by the use of the present simulation suite, and cosmic
variance is further canceled by direct simulation-to-
simulation comparison as we display in the right columns,
Table I. Thereby, we optimally test our reconstructions’
accuracy.

FIG. 2. Fractional BAO signal in simulations and reconstruc-
tions. Top panel: ratio of power spectra from simulations with and
without BAO signal, averaged over ten FastPM simulations and
their reconstructions, hPwigðkÞ − PnwðkÞi=hPwigðkÞi. Bottom
panel: deviations from the initial condition’s fractional BAO
signal, ΔICðkÞ ¼ hPwigðkÞi=hPnwðkÞi − hPIC

wigðkÞi=hPIC
nwðkÞi. The

shaded band indicates the standard deviation σICðkÞ as estimated
from the simulations and defined in the text.

TABLE I. Bias and uncertainties of BAO scales recovered in the fractional power spectra of simulations and
reconstructions with and without canceling cosmic variance. The columns list the mean values and standard
deviations of rBAO (left columns) rBAO − rICBAO (right columns) obtained from fitting α to the power spectra as
described in the main body.

hr̂BAOi (Mpc) σr̂BAO (Mpc)

vs theory vs IC vs theory vs IC

Initial condition þ0.02 [þ0.01%] �0.00 [�0.00%] 0.34 [0.23%] 0.00 [0.00%]
MAK reconstruction −0.11 [−0.08%] −0.13 [−0.09%] 0.44 [0.30%] 0.29 [0.19%]
Standard reconstruction −0.03 [−0.02%] −0.05 [−0.03%] 0.69 [0.47%] 0.85 [0.58%]
Final condition þ0.48 [þ0.33%] þ0.46 [þ0.31%] 1.06 [0.72%] 1.19 [0.81%]
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Conclusions.—This Letter demonstrates the application
of optimal transport theory to a specific problem in
cosmology, the reconstruction of the BAO peak in the
matter power spectrum from low-z observations. BAO
analyses play a crucial role in inferring cosmological
parameters, and reconstruction methods have long aided
the accuracy with which this signal is extracted.
Outperforming many of the most promising algorithms,
our method scales well (∝ N log N) with increased survey
size, securing bright prospects in light of upcoming large-
scale galaxy surveys.
In specific, we found that our reconstruction improves

on detecting the BAO signal in the power spectrum by a
factor of 4.3 compared with attempting to extract the BAO
scale without having performed any reconstruction. Even
in the case of having applied the so-called standard
reconstruction technique, our method reduces the uncer-
tainties by more than a factor of 3. This is highly
promising especially given that in moving forward in
time, we considered no more than the Zel’dovich approxi-
mation. We therefore highly anticipate further improve-
ment of reported accuracy by amending the second step in
Fig. 1 with corrections from higher-order Lagrangian
perturbation theory [37,49].
The next steps for optimal incorporation of our

reconstruction method into analyses of survey data include
its adaptation to account for the surveys’ selection func-
tions, halo masses, redshift-space distortions, and charac-
terization and computation of the reconstruction covariance
matrices. Our algorithm’s flexibility easily accommodates
such modifications without losing its efficiency.
In summary, our method makes direct use of the

variational nature of gravitational evolution and thereby
its reconstruction. It finds a quick path to the solution by
leveraging first and second order information of the
problem [i.e., it being both smooth (C2) and convex],
while existing MAK methods need to exhaustively explore
a huge ½N2 log ðNÞ� combinatorial space. This is made
possible by a fortuitous yet elegant convergence between
the physical, mathematical, and computational aspects of
the problem: the specific cosmological setting that we
considered (continuous mass transported to a point set) has
nice mathematical properties (semidiscrete Monge-Ampère
equation translated into a smooth and concave optimi-
zation problem), with an underlying geometric structure
(Laguerre diagram) that can be exactly computed by our
algorithm.
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