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We introduce a resetting Brownian bridge as a simple model to study search processes where the total
search time tf is finite and the searcher returns to its starting point at tf. This is simply a Brownian motion
with a Poissonian resetting rate r to the origin which is constrained to start and end at the origin at time tf .
We unveil a surprising general mechanism that enhances fluctuations of a Brownian bridge, by introducing
a small amount of resetting. This is verified for different observables, such as the mean-square
displacement, the hitting probability of a fixed target and the expected maximum. This mechanism,
valid for a Brownian bridge in arbitrary dimensions, leads to a finite optimal resetting rate that minimizes
the time to search a fixed target. The physical reason behind an optimal resetting rate in this case is entirely
different from that of resetting Brownian motions without the bridge constraint. We also derive an exact
effective Langevin equation that generates numerically the trajectories of a resetting Brownian bridge in all
dimensions via a completely rejection-free algorithm.
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Search processes are ubiquitous in nature. They appear
in a wide range of situations ranging from foraging animals
[1,2], biochemical reactions [3–6], and all the way to
behavioral psychology [7–9]. Search problems exhibit rich
features [10–15] and finding an optimal search strategy in a
given context is an interesting problem with multiple
applications across disciplines [16,17]. In recent years,
there has been a surge of interest in the effect of resetting in
search processes (for a recent review see Ref. [18]).
Stopping and starting from scratch has shown to be an
efficient search strategy in several contexts such as in
optimization algorithms [19–23], chemical reactions
[24,25], animal foraging [26–30], and catastrophes in
population dynamics [31–40]. Perhaps the effect of reset-
ting is best seen in the simple model of diffusion introduced
by Evans and Majumdar [41,42]. In this resetting Brownian
motion (RBM) model, the position xðtÞ of a Brownian
motion, e.g., in one dimension, is reset to the origin
randomly in time according to a Poisson process with a
constant rate r. In a time interval dt, the position xðtÞ
follows the stochastic rule

xðtþ dtÞ ¼
�
xðtÞ þ ffiffiffiffiffiffiffi

2D
p

ηðtÞdt; with prob: 1 − rdt;

0; with prob: rdt;

ð1Þ

where D is the diffusion coefficient and ηðtÞ is an
uncorrelated white noise with zero mean hηðtÞi ¼ 0 and
delta correlator hηðtÞηðt0Þi ¼ δðt − t0Þ. The dynamics there-
fore consists of a combination of pure diffusion with

intermittent resets to the origin. The effect of resetting
on the search process can be simply measured by the mean
first-passage time hTðMÞi to a level M, which is the mean
time the searcher takes to find a target located at a position
M. For pure diffusion without resetting, it is well known
that this quantity is infinite [43,44]. In contrast, resetting
leads to the striking result that the mean first-passage time
hTðMÞi becomes not only finite but also that it becomes
minimal at an optimal resetting rate r�. The mechanism
behind this result is that resetting suppresses the trajectories
that diffuse far away from the target and makes them restart
from the origin, hence increasing their chances to find the
target. This model is straightforward to generalize to higher
dimensions and an optimal resetting rate has been shown to
exist in all dimensions [45]. Since the original model, the
existence of an optimal resetting rate has been studied
extensively for various stochastic processes, leading to a
tremendous amount of activities [42,45–63]—see Ref. [18]
for a review. The existence of this optimal resetting rate has
also been confirmed in experiments with optical traps in
both one and two dimensions [64–66].
In most studied examples of search processes with

resetting, the underlying search process is assumed to be
free, i.e., it does not satisfy additional constraints. However,
in many circumstances, search processes are typically time-
limited and do not have the luxury to continue forever. For
example, while foraging for food, animals typically start
from their nest and come back to it at the end of the day
[26,28,30,67–76]. Search patterns may vary from species to
species. For example, desert ants such as Cataglyphis fortis
explore space in a rather tortuous manner, but return home
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(inbound) almost along a straight line [73]. Another typical
example of a time-limited search occurs in a rescue mission
after a plane crash in the ocean: the divers are typically
called off after a certain amount of time and they go back to
their initial location. The stochastic moves in such search
processes may be situation specific, but they all share a
common feature; namely, they are constrained to come
back to their starting point after a fixed time tf, the so called
bridge condition. Our goal in this Letter is not to provide an
accurate description of a specific search process, but rather
to study the combined effect of resetting and the bridge
constraint in a simple solvable search process to gain
interesting insights. An ideal setting for such a simple
solvable model is provided by a Brownian bridge, where
the process undergoes a Brownian motion locally in time,
but is constrained to reach a fixed position (e.g., the initial
position) after a fixed time tf. Brownian bridges have been
studied extensively with many applications. For example,
they play an important role in analyzing animal move-
ments: typically the positions of an animal are recorded by
GPS at discrete times and the trajectory in between two
successive recorded positions is approximated by a
Brownian bridge within the popular Brownian bridge
movement model (BBMM) [74]. This, in turn, has been
used to characterize the home ranges of birds [75]. A
similar construction is used in a completely different
context of finance, e.g., in the valuation of a mortgage-
backed security portfolio or the barrier options with a fixed
maturity period tf [76]. Brownian bridges also appear as
central objects in statistical inference, e.g., in the celebrated
Kolmogorov-Smirnov distribution-free test for the inde-
pendence of random variables [77].
In this Letter, we study a Brownian bridge model in

arbitrary dimensions with a fixed duration tf, but in the
presence of resetting at a constant rate r to its initial
position. We call this a resetting Brownian bridge (RBB),
with xBðtÞ denoting its coordinate at time 0 ≤ t ≤ tf with
the bridge conditions xBð0Þ ¼ 0 and xBðtfÞ ¼ xf. The
general question we address is, is resetting still a good
search strategy in the presence of a bridge constraint? In
other words, does the paradigm of an optimal resetting rate
r� still hold for RBB? We find, rather surprisingly, that
there is an interesting trade-off between resetting and the
bridge constraint such that a small resetting rate, in the
presence of a bridge constraint, actually enhances bridge
fluctuations, rather than reducing it as naive expectations
would suggest.
This “enhanced fluctuations mechanism” (EFM) of a

Brownian bridge induced by resetting turns out to be rather
general and holds in all dimensions. The origin of EFM can
be qualitatively understood as follows. In the absence of
resetting, the particle cannot go too far away from the
origin, since it has to come back to the final position close
to the origin at time tf, by a slow diffusing process.
However, when a small amount of resetting rate r is

switched on, the particle can go further away from the
origin since it can come back close to the origin at time
t ¼ tf by a “last minute” instantaneous resetting. Hence
there is a subtle trade-off between the resetting and the
bridge constraint. Clearly, this argument is rather general
and is expected to hold in any dimension, as demonstrated
in Sec. III of the Supplemental Material [78]. For the
purpose of clarity, we will present mostly the 1d case in the
main text, and defer the details for d > 1 to Ref. [78].
The EFM has important consequences for search proc-

esses. If a target is placed at a fixed distance from the origin
where the searcher starts, resets, and returns, a bigger
spatial fluctuation of the searcher would imply that the
target will be found more easily. Indeed, we also compute
exactly the probability to find the target before tf (hitting
probability) and show that it also has a nonmonotonic
behavior as a function of r, achieving its maximum at an
optimal resetting rate. Computations of other observables,
such as the expected maximum of the RBB, also confirms
the existence of an optimal resetting rate. Thus the
paradigm of the existence of an optimal resetting rate also
holds for constrained bridge processes with resetting, albeit
the physical mechanism at play is rather different from the
free case. In addition to unveiling this general fluctuations
enhancingmechanism via resetting and a bridge constraint,
we also address an important algorithmic issue: how does
one generate a Brownian bridge with resetting numerically
in an efficient manner? In this Letter, we show how to
derive an effective Langevin equation that allows us to
generate RBB trajectories with the correct statistical weight
in a completely rejection-free manner.
Our first goal is to construct a rejection-free algorithm to

generate an RBB with the correct statistical weight. Even
though this algorithm can be derived in all dimensions d
[78], here we present the d ¼ 1 case where, for simplicity,
we set the initial and final positions of the bridge to be the
same, namely, xBðtfÞ ¼ xBð0Þ ¼ 0. Generating constrained
stochastic Markov processes was initially studied in the
probability literature [82,83] and more recently it has
emerged as a vibrant research area by itself in the context
of sampling rare or constrained trajectories with applica-
tions ranging from chemistry and biology all the way to
particle physics [84–103]. In the context of the RBB, a
naive solution would be to generate free RBM paths and
discard the ones that do not satisfy the bridge constraint
xBðtfÞ ¼ 0. However, this is computationally wasteful
since the RBM trajectories that go back to the vicinity
of 0 at t ¼ tf are typically rare. Here, we show that the RBB
trajectories can be generated in a rejection-free manner,
from the effective Langevin equation

xBðtþ dtÞ ¼
�
xBðtÞ þ

ffiffiffiffiffiffiffi
2D

p
ηdtþ μ̃dt; p ¼ 1 − r̃dt;

0; p ¼ r̃dt;

ð2Þ
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where the effective drift μ̃ and resetting rate r̃ are space-
time dependent and are given by

μ̃ðxB; tÞ ¼ −
ffiffiffiffiffiffiffiffiffi
4rD

p
Vðy; τÞ; ð3aÞ

r̃ðxB; tÞ ¼ rWðy; τÞ; ð3bÞ

with y ¼ xB=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dðtf − tÞp

, τ ¼ rðtf − tÞ and the scaling
functions

Vðy; τÞ ¼ ye−y
2−τffiffiffi

τ
p ½e−τ−y2 þ ffiffiffiffiffi

πτ
p

erfð ffiffiffi
τ

p Þ� ; ð4aÞ

Wðy; τÞ ¼ e−τ þ ffiffiffiffiffi
πτ

p
erfð ffiffiffi

τ
p Þ

e−τ−y
2 þ ffiffiffiffiffi

πτ
p

erfð ffiffiffi
τ

p Þ : ð4bÞ

Here erfðzÞ ¼ ð2= ffiffiffi
π

p Þ R z
0 e

−u2du is the error function. Note
that while RBM with space-time dependent resetting rates
have been studied before [18,42,104–108], here they
emerge naturally and have a specific form in order to
satisfy the bridge constraint.
To derive this effective Langevin equation (2), we

consider the probability distribution function (PDF)
PBðx; tjtfÞ of the position xBðtÞ of an RBB of total duration
tf. We split the interval ½0; tf� into two parts: ½0; t� and ½t; tf�
and use the Markov property of the bridge to write

PBðx; tjtfÞ ¼
Prðx; tj0; 0ÞPrð0; tfjx; tÞ

Prð0; tfj0; 0Þ
; ð5Þ

where Prðx; tj0; 0Þ is the PDF of the RBM at time t, starting
from the origin at t ¼ 0. The denominator is just a
normalization constant that “counts” all the trajectories
of the RBM of duration tf, starting and ending at 0. Note
that Eq. (5) can be interpreted as the fraction of all RBM
paths of duration tf satisfying the bridge constraint that also
pass through x at time t. To ease notation, we introduce the
forward propagator Prðx; tÞ≡ Prðx; tj0; 0Þ, where x
appears as the final position, and the backward propagator
Qrðx; tÞ≡ Prð0; tfjx; tÞ, where x appears as the initial
position. In these notations, Eq. (5) reads PBðx; tjtfÞ ¼
Prðx; tÞQrðx; tÞ=Prð0; tfÞ. The two quantities Prðx; tÞ and
Qrðx; tÞ satisfy, respectively, the forward and backward
Fokker-Plank equations of RBM, respectively, given by
(see Supplemental Material [78] for details)

∂tPrðx; tÞ ¼ D∂xxPrðx; tÞ − rPrðx; tÞ þ rδðxÞ; ð6aÞ

−∂tQrðx; tÞ ¼ D∂xxQrðx; tÞ − rQrðx; tÞ þ rQrð0; tÞ; ð6bÞ

with the initial and final conditions Prðx; 0Þ ¼ δðxÞ,
Qrðx; tfÞ ¼ δðxÞ. Our goal is to write the Fokker-Plank
equation satisfied by the bridge PDF PBðx; tjtfÞ. Taking a

time derivative of Eq. (5) and using Eqs. (6) satisfied by the
free propagators, we get [see Eq. (21) of Ref. [78] with
d ¼ 1]

∂tPBðx; tjtfÞ
¼ D∂xxPBðx; tjtfÞ − ∂x½μ̃ðx; tÞPBðx; tjtfÞ�

− r̃ðx; tÞPBðx; tjtfÞ þ δðxÞ
Z

∞

−∞
r̃ðx0; tÞPBðx0; tÞdx0;

ð7Þ

where we have introduced an effective space-time
dependent drift μ̃ðx; tÞ and resetting rate r̃ðx; tÞ which
are given by

μ̃ðx; tÞ ¼ 2D∂x ln½Qrðx; tÞ�; r̃ðx; tÞ ¼ r
Qrð0; tÞ
Qrðx; tÞ

: ð8Þ

From the Fokker-Planck equation (7), one can derive the
effective Langevin equation (2), as explained in Sec. II of
Ref. [78]. To compute μ̃ðx; tÞ and r̃ðx; tÞ, we need to
compute the backward propagator Qrðx; tÞ in Eq. (8).
Noting that Qrðx; tÞ ¼ Prð0; tfjx; tÞ, we just need the
propagator for the RBM, which can be computed by using
the renewal identity [18]

Prðx; tjx0; 0Þ ¼ e−rtP0ðx; tjx0; 0Þ

þ r
Z

t

0

dτe−rτP0ðx; τj0; 0Þ; ð9Þ

where P0ðx; tjx0; 0Þ ¼ e−½ðx−x0Þ2=4Dt�=
ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p
is the stan-

dard Brownian propagator (without resetting). The renewal
identity (9) simply states that for the particle to be at x at a
time t, it either (i) must never reset, in which case its
probability distribution is just the one of a free Brownian
motion P0ðx; tjx0; 0Þ, or (ii), reset for the last time at
t − τ > 0, after which the particle restarts from the origin
and then propagates to x in the remaining time τ. As the
resetting times follow a Poisson process, the former event
happens with probability e−rt while the latter happens with
probability re−rτ and has to be summed over all τ in ½0; t�.
From the renewal identity, one can straightforwardly obtain
Qrðx; tÞ≡ Prð0; tfjx; tÞ and then, using Eq. (8), find the
exact expressions for μ̃ðx; tÞ and r̃ðx; tÞ as given in Eqs. (3)
and (4). We can then use Eq. (2) to generate RBB
trajectories (see left panel in Fig. 1). The position distri-
bution PBðx; tjtfÞ obtained numerically is in excellent
agreement with the theoretical one (see the right panel
in Fig. 1). The effective Langevin equation (2) derived for
the one-dimensional RBB can be generalized to RBB in
higher dimensions in a rather straightforward manner, as
detailed in Ref. [78]. Below we compute three observables
illustrating the EFM exhibited by the RBB as a search
process.
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Mean square displacement.—The PDF of the position
xBðtÞ of an RBB at some intermediate time 0 ≤ t ≤ tf is
given in Eq. (5). The mean position hxBiðtjtfÞ vanishes by
symmetry. Hence the minimal quantity that characterizes
the spatial fluctuations is the second moment of the PDF,
i.e., the mean-square displacement hx2BiðtjtfÞ. We compute
hx2BiðtjtfÞ from Eq. (5) analytically, leading to

hx2BiðtjtfÞ ¼ 2Dtff

�
a ¼ t

tf

����R ¼ rtf

�
; ð10Þ

where the scaling function f can be obtained explicitly [see
Eq. (39) in Ref. [78] ]. A plot of the function fðajRÞ vs
a ∈ ½0; 1�, for different values of R, is given in the left panel
in Fig. 2. As the rescaled resetting rate R ¼ rtf varies from
0 to ∞, the function fðajRÞ, crosses over from a parabolic
to a flat shape, i.e., fðajR → 0Þ ¼ að1 − aÞ and
fðajR → ∞Þ ≈ 1=R. For a general R, the function

fðajRÞ is not symmetric around a ¼ 1=2, since resetting
breaks the time-reversal symmetry. For a given R, the
function fðajRÞ has a unique maximum at a ¼ a�ðRÞ and
this maximal mean square displacement fða�ðRÞjRÞ (in
units of 2Dtf) varies nonmonotonically with R: it first
increases with increasing R, achieves a maximum at R ¼
R� ≈ 0.895 and then decreases again with increasing R (see
Fig. 2). Thus, interestingly, a nonzero resetting rate, when it
is not too large, actually enhances the bridge fluctuations.
Naively, one would think that resetting to the origin
localizes the trajectory of the bridge in the vicinity of x ¼
0 and thus would suppress fluctuations. This naive picture
holds only for very large R. Moreover, there is a nontrivial
optimal rescaled resetting rate R� that optimizes the
maximum value of the mean-square displacement
f½a�ðRÞjR� over the full interval ½0; tf�, thus enabling the
particle to explore more space. Thus the EFM leading to an
optimal r� in the RBB is thus very different from the one in
the free RBM.
Hitting probability.—To illustrate further the EFM in the

context of a search of a target located at M, we next
compute the hitting probability, i.e., the probability that the
RBB (searcher) finds the target at M before time tf. The
hitting probability can be computed from the relation

phitðtf;MÞ ¼
Z

tf

0

dtFBðtjM; tfÞ; ð11Þ

where FBðtjM; tfÞ is the first-passage probability density of
the RBB at level M with t ≤ tf. This can be computed by
decomposing the RBB trajectories into two parts: one in the
time interval ½0; t� where it first hits the level M at a time
t < tf, another one in the time interval ½t; tf� where it
propagates from M to the origin. One gets

FBðtjM; tfÞ ¼
FrðtjMÞPrð0; tfjM; tÞ

Prð0; tfj0; 0Þ
; ð12Þ

where FrðtjMÞ is the first-passage time distribution of a
RBM [41], Prðx; tjx0; tÞ is the propagator of a RBM given
in Eq. (9) and the denominator is a normalization factor that
“counts” all the bridge trajectories. Using the known results
for FrðtjMÞ [41] and the propagator from Eq. (9) (see
Ref. [78] for details) we get

phitðtf;MÞ ¼ h

�
R ¼ rtf; m ¼ Mffiffiffiffiffiffiffiffiffiffi

2Dtf
p

�
; ð13Þ

where the scaling function h can also be computed
analytically (see Sec. IV B in Ref. [78]). When R ¼ 0,
we recover the hitting probability of a Brownian bridge
hðR ¼ 0; mÞ ¼ e−2m

2

. For a given target position m, the
function hðR;mÞ varies nonmonotonically with R and
achieves a maximum at R ¼ R�ðmÞ. A plot of hðR;mÞ
vs R form ¼ 1 is shown in the left panel in Fig. 3. Thus the

FIG. 1. Left: A typical RBB trajectory xBðtÞ with resetting rate
r ¼ 10, diffusion constant D ¼ 1, and duration tf ¼ 1. The
resetting events are denoted by red dashed lines with arrows.
Right: Position distribution for an RBB at an intermediate time
t ¼ tf=2, where r ¼ 10, D ¼ 1, and tf ¼ 1. The distribution
obtained numerically by sampling the trajectories from the
effective Langevin equation in Eq. (2) is compared with the
theoretical prediction in Eq. (5)—see Eq. (35) in Ref. [78] for a
more explicit expression. The histogram has been obtained by
sampling 105 trajectories with uniform bin sizes of width 8 ×
10−2 (only one of every two points are shown for clarity).

FIG. 2. Left panel: The function fðajRÞ plotted vs a is evaluated
numerically, averaging over 105 samples, a using the effective
Langevin equation in Eq. (2) (symbols) and is compared to the
theoretical prediction (plain lines), given in Eq. (10), for different
values ofR—see also Eqs. (39) and (41) in Ref. [78]. This function
is clearly asymmetric around a ¼ 1=2. Only when R → 0, it
approaches to the symmetric form fðajR → 0Þ ¼ að1 − aÞ. For
any R, the function fðajRÞ has a unique maximum at a ¼ a�ðRÞ.
Right panel: The maximal value fða�ðRÞjRÞ plotted vs R. It has a
unique maximum at R� ≈ 0.895 (red dot).
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paradigm of an optimal resetting rate R�ðmÞ is also
manifest in the behavior of the hitting probability. As a
function of the scaled target location m, the optimal rate
R�ðmÞ is also interesting (see Ref. [78]). Another observ-
able that also confirms this optimal paradigm is the
expected maximum of the RBB as a function of the
rescaled resetting rate R that we have computed exactly
in Ref. [78] (as shown in the right panel in Fig. 3).
To conclude, the principal result of this Letter is the

uncovering of an unexpected mechanism of enhanced
fluctuations, caused by the combined effect of the bridge
condition and a small resetting rate. This mechanism is very
general and holds in arbitrary dimensions. This enhanced
fluctuation mechanism also leads to the existence of a
resetting rate r� that optimises the search process. This
optimal paradigm holds in all dimensions but the mecha-
nism for it is different from that of a standard resetting
Brownian motion. An additional bonus of this Letter is to
derive an exact effective Langevin equation in arbitrary
dimensions that provides a complete rejection-free algo-
rithm to generate numerically the trajectories of resetting
Brownian bridges.
The trajectories have been generated with a time step of

dt ¼ 10−3 and our code is available as a Julia notebook in
Ref. [109].
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