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We present an approach to the numerical simulation of open quantum many-body systems based on the
semiclassical framework of the discrete truncated Wigner approximation. We establish a quantum jump
formalism to integrate the quantum master equation describing the dynamics of the system, which we find
to be exact in both the noninteracting limit and the limit where the system is described by classical rate
equations. We apply our method to simulation of the paradigmatic dissipative Ising model, where we are
able to capture the critical fluctuations of the system beyond the level of mean-field theory.
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The identification of phase transitions and their univer-
sality classes is one of the most important tasks in many-
body physics, especially for nonequilibrium systems where
many of the conventional methods cannot be applied. Here,
we show that a large class of steady state phase transitions
arising in open quantum systems can be efficiently simu-
lated and analyzed using an open system variant of the
discrete truncated Wigner approximation.
Open quantum many-body systems are not only useful

for the dissipative preparation of tailored quantum many-
body states [1–12], but are also of fundamental interest, as
their dynamics can realize nonequilibrium phenomena that
are not found in their closed counterparts. Most strikingly,
the steady state of an open system can undergo phase
transitions [13–36], where an associated order parameter
changes across the transition in a nonanalytic way. A large
class of such transitions is governed by a dynamical
symmetry rendering static correlation functions to obey
thermal statistics [37,38]. Of particular interest is a dis-
sipative variant of the Ising model in a transverse field [20]
because of its relevance for ongoing experiments with
driven-dissipative Rydberg gases [39,40]. For this model, a
first-order liquid-gas transition has been reported, which
has been predicted to end in an Ising critical point based on
mean-field calculations [41]. However, since the numerical
analysis of critical open many-body systems is extremely
challenging [42], a reliable assessment of its critical
behavior is still lacking.
In this Letter, we build upon the discrete truncated

Wigner approximation [43] and introduce a variant capable
to treat open quantum systems. Our approach constitutes a
wave function Monte Carlo method in the quantum-jump
formalism [44–46]. Crucially, our method is exact in the
noninteracting limit, which we use for benchmarking, as
well as in the fully classical limit, where coherences in the
density matrix vanish and the dynamics is governed by
classical rate equations. We then apply our method to the

dissipative Ising model on a square lattice, where we find
that the transition belongs to the two-dimensional Ising
universality class. Remarkably, we obtain critical expo-
nents beyond their mean-field value, although the inter-
action is only taken into account on a mean-field level. We
connect this surprising result to the fact that classical
fluctuations are correctly taken into account, while quan-
tum fluctuations are irrelevant at the transition. This
scenario is characteristic for all open quantum systems
possessing the aforementioned dynamical symmetry, hence
our method can be expected to correctly describe the
critical behavior of a large class of dissipative many-body
models, e.g., the dissipative XYZ model [47].
Open-system discrete truncated Wigner approximation

(OSDTWA).—Phase-space methods, such as the truncated
Wigner approximation (TWA), approximate the quantum-
mechanical dynamics by a semiclassical evolution of
individual trajectories. In the TWA, which has also been
employed to investigate open quantum systems [52–56],
the initial state is sampled from a continuous Wigner
function [57], which is replaced by a discrete Wigner
function for systems with discrete degrees of freedom
[58]. For a single spin-1=2 particle, we represent the
discrete phase space by four phase points α ¼ ðq; pÞ ∈
fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg [43,58,59]. The corresponding
phase-point operators Âα are written in terms of the Pauli
matrices σ̂ ¼ ðσ̂x; σ̂y; σ̂zÞ as

Âα ¼ ℘̂ðrαÞ; ℘̂ðrÞ≡ ðσ̂0 þ r · σ̂Þ=2; ð1Þ
with the vectors rð0;0Þ ¼ ð1;1;1Þ, rð0;1Þ ¼ ð−1;−1;1Þ, rð1;0Þ ¼
ð1;−1;−1Þ, and rð1;1Þ ¼ ð−1; 1;−1Þ [58]. Note that we
have also included a σ̂0 term to allow sampling
from unnormalized density matrices. For a system with
N spin-1=2 the phase space spans by 4N points, i.e.,
α ¼ fα1; α2;…αNg. The time evolution evolves under
the classical dynamics of phase-space variables as
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α ðtÞ ≈
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α

wαð0ÞOW;cl
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where OW
α is the Weyl symbol for the operator Ô and

OW;cl
α ðtÞ represents the classical evolution. wαð0Þ is the

initial Wigner function on the discrete many-body phase

space. It factorizes for every spin i, i.e., wαð0Þ ¼
Q

N
i¼1 w

½i�
αi ,

where the superscript [i] denotes the phase space for spin i.
Similarly, for the initial density matrix we have
ρ̂ð0Þ ¼ Q

N
i¼1 ρ̂

½i�. For the initial state with spins pointing

in the −z direction, w½i�
αi ¼ Tr½ρ̂½i�ðẑÞÂαi �=2 yields w½i�

ð0;0Þ ¼
w½i�
ð0;1Þ ¼ 0 and w½i�

ð1;0Þ ¼ w½i�
ð1;1Þ ¼ 1=2 for every spin i. This

is illustrated in Fig. 1(a), where the three sets of lines (two
horizontal, two vertical, and two diagonal) correspond to
the probability of a measurement outcome. This means the
probability for a spin being in the þz and −z direction is
0% and 100%, respectively. Similarly, the probabilities for
a spin being in the�x and�y directions are 50% and 50%,
respectively.
To solve the open-system dynamics we use the quantum

master equation in Lindblad form

d
dt

ρ̂ ¼ −i½Ĥ; ρ̂� þ
X

i

�
ĉiρ̂ĉ

†
i −

1

2
fĉ†i ĉi; ρ̂g

�
; ð3Þ

where the Hamiltonian Ĥ describes the coherent evolution
and the jump operators ĉi correspond to the incoherent part

of the dynamics. While our OSDTWA approach is com-
pletely generic, we will exemplify our method for a
dissipative variant of the Ising model in a transverse field
[20], which is one of the most important models in the
analysis of open quantum many-body systems. The interest
in this model does not only stem from the paradigmatic
character similar to the transverse-field Ising model for
closed quantum systems [60], but also from its importance
to understand experimental results obtained in strongly
interacting Rydberg gases [39,40]. Its Hamiltonian has the
conventional form Ĥ ¼ ðg=2ÞPi σ̂

x
i þ ðV=4ÞPhiji σ̂

z
i σ̂

z
j,

where g is the transverse field and V is the nearest-neighbor
interaction. Dissipation is introduced via spin-flip operators
ĉi ¼ ffiffiffiffiffi

γd
p

σ̂−i , with γd being the decay rate of the up spins
and σ̂−i ¼ ðσ̂xi − iσ̂yi Þ=2. This model can be realized using
laser-driven Rydberg atoms, for which the spin-down state
corresponds to the atomic ground state and the spin-up state
refers to an excited Rydberg state. Transitions between the
states are driven by a coherent laser with a Rabi frequency
Ω ¼ g and the interaction V describes a repulsive van der
Waals interaction C6=a6 determined by a C6 coefficient at
the lattice spacing a [61].
In the following, we obtain the dynamics of the inter-

acting many-body system by replacing the time evolution
via classical trajectories as described in Eq. (2). We use
classical spin variables Sβi , with β ¼ ðx; y; z; 0Þ. The initial
states are sampled on the discrete phase space according to
the distributions encoding the spin pointing down for all
particles, i.e., we fix Szi ¼ −1 and the spin components in
the orthogonal direction are chosen randomly as Sxi , S

y
i ¼

�1 with equal probability. In contrast to the closed DTWA
[43], we also include classical variables S0i , which encodes
the local norm of a given site and is initialized to S0i ¼ 1.
This additional degree of freedom is necessary because
already the closed DTWA conserves the norm of the Bloch
vector only after averaging over all trajectories, while our
quantum-jump approach requires knowledge of the norm
on the level of a single trajectory. Each spin of the state
propagates under the effective non-Hermitian Hamiltonian
Ĥi − iγdσ̂

þ
i σ̂

−
i =2. The corresponding semiclassical equa-

tions of motion are [47]

_Sxi ¼ −
V
2
Syi
X

j

Szj −
γd
2
Sxi ; ð4Þ

_Syi ¼
V
2
Sxi
X

j

Szj − gSzi −
γd
2
Syi ; ð5Þ

_Szi ¼ gSyi −
γd
2
ðSzi þ S0i Þ; ð6Þ

_S0i ¼ −
γd
2
ðSzi þ S0i Þ; ð7Þ

(a)

(b)

FIG. 1. Open-system dynamics within the discrete truncated
Wigner approximation. (a) Bloch sphere representation for a
spin-1=2 particle, where the spin points in the −z direction. This
initial state is sampled from a discrete four-point Wigner
quasiprobability distribution wðp;qÞ, which are wð0;0Þ ¼wð0;1Þ ¼0

and wð1;0Þ ¼ wð1;1Þ ¼ 1=2. The probability for a spin to point
along the �x, �y, and �z directions ðpx;y;z

�1 Þ is given by the sum
over the vertical, diagonal, and horizontal lines, respectively
[43,58]. (b) Classical trajectories corresponding to two different
initial configurations (dotted and dashed lines) for single spin
and g=γd ¼ 5. The averaged time evolution of hSzðtÞi over 105
trajectories is shown as a continuous line.
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with the sum over j being performed over the nearest
neighbors of the spin i. Here, the interaction terms are
incorporated on the level of a mean-field decoupling, as is
the case in the closed DTWA. Importantly, this mean-field
decoupling is performed on the level of a single trajectory,
therefore the ensemble average does not correspond to the
mean-field equations of motion for the density operator. If
desired, it is also possible to include higher orders of the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy of correlation functions in the phase-point operators
[59]. We numerically integrate the equations of motion
using a fourth-order Runge Kutta method. The global norm
S0ðtÞ ¼ Q

N
i S0i ðtÞ decreases under the time evolution from

its initial value S0ð0Þ ¼ 1. Once the global norm drops
below a random number r drawn from a standard uniform
distribution, a quantum jump occurs. Importantly, this
approach allows us to use a high-order numerical integrator
for both the coherent and dissipative parts of the time
evolution and thus yields a higher order of accuracy
compared to direct approaches to solve the quantum master
equation [62,63]. The precise time τ of the quantum jump is
determined by solving the equation S0ðτÞ ¼ r.
Having determined the time of the quantum jump, we

still need to choose which of the jump operators (i.e., on
which site) is actually occurring. For this, we calculate the
jump probability for spin i by δpi ¼ ðQN

j≠i S
0
jÞ × γdðS0i þ

Szi Þ=2 [47]. The jump operator that is fired is then chosen to
occur at site n such that n is the smallest integer satisfyingP

n
i PiðτÞ ≥ r, where Pi ¼ δpi=ð

P
N
i δpiÞ is the normal-

ized spin probability [63]. For the fired spin n, we set
Szn ¼ −1 and choose Sxn and S

y
n randomly as �1 again with

equal probability. For all other spins we normalize the spin
fields by S0i as S

β
i ¼ Sβi =S

0
i . We continue the time evolution

by generating a different r and by repeating the above
procedure, see Fig. 1(b). To avoid rare events leading to a
divergence of the spin variables, we clip each individual
spin variable to jSzi j <

ffiffiffi
3

p
, which is the largest possible

value that can be reached in an individual trajectory in a
closed system. However, we find that this clipping is only
necessary in the absence of interactions. In Fig. 1(b) we
also show hSzðtÞi, which initially displays oscillatory
behavior and then eventually reaches a steady state.
Benchmarking the OSDTWA.—In the following, we

compare the OSDTWA to the time evolution of a single
spin, as in this case, the method does not introduce any
additional errors from the mean-field decoupling in
Eqs. (4)–(5) and the sampling of the phase space in terms
of a complete set of single-site operators is exact. We refer
to this as the noninteracting case as it does not contain any
spin-spin interactions. Hence, the OSDTWA should match
the exact solution of the quantum master equation [64] in
the limit of vanishing step size of the numerical integration.
In Fig. 2 we compare the simulation result of hSzðtÞi with
the exact result SzexactðtÞ for g=γd ¼ 5. Their comparison

shows an excellent agreement; see also the Supplemental
Material [47]. For the steady state SzexactðtÞ yields the result
Szexact ¼ −1=ð1þ 2g̃2Þ, with g̃ ¼ g=γd. We therefore deter-
mine the numerical result of the steady state from hSzðtÞi in
the long-time limit tγd ¼ 100. In the inset of Fig. 2 we
present the numerical and the exact result of the steady state
as a function of g=γd. The steady state of the OSDTWA
again agrees excellently with the exact steady state.
Furthermore, we find the error in hSzi scaling like
Δt6.15�0.22 with the integration step size Δt [47].
Another important consequence of our particular choice

of the incorporation of quantum jumps is that the method
becomes also exact when the dynamics is governed by
classical rate equations. In this case, our approach yields a
quantum-jump version of conventional kinetic Monte Carlo
methods [65].
Driven-dissipative criticality.—Let us now turn to the

dissipative Ising model including the Ising interaction on a
two-dimensional square lattice. From variational calcula-
tions [66], field-theoretical arguments [38], tensor network
simulations [67], and cluster mean-field theory [68], it is
known that the model exhibits a first-order transition for
sufficiently strong interactions V, when varying the
strength of the transverse field g. This transition can be
understood as a liquid-gas transition of spin-up particles
and the first-order transition line vanishes eventually in a
critical point when decreasing V [41,66]. Importantly, this
transition is not due to spontaneous breaking of the Z2

symmetry of the Hamiltonian (as this is already broken by
the dissipation), but it is governed by the appearance of an
emergent symmetry, similar to the liquid-gas transition in
thermal equilibrium. Using mean-field analysis, the critical
point has been predicted to belong to the Ising universality
class [41], but it has not been possible to analyze the critical
behavior going beyond a mean-field treatment.
To demonstrate that the OSDTWA is capable of captur-

ing fluctuations beyond mean-field theory, we first consider

FIG. 2. Benchmarking against exact results for a single spin.
The time evolution of hSzðtÞi, same as in Fig. 1(b), is compared
with the exact result SzexactðtÞ for g=γd ¼ 5. The inset shows the
numerically obtained steady state from hSzðtÞi in the long-time
limit and the exact steady state for varying g=γd.
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a 10 × 10 lattice with periodic boundary conditions
and V=γd ¼ 5. We calculate the spin-up density n↑ ¼
ð1þ hSziÞ=2 using the steady state value of hSzðtÞi in a
long-time limit. Starting from the solution at g ¼ 0, we
follow the steady state for g in the range g=γd ¼ ½0; 10�
using both a forward and a reverse sweep of g. In Fig. 3 we
show the results of n↑ as a function of g=γd for both cases of
forward and reverse sweeps. The perfect overlap demon-
strates that the steady state obtained within the OSDTWA is
unique and not plagued by the mean-field artifact of
bistability [20,41]. In addition, the results of n↑ manifest
a first-order phase transition, since n↑ undergoes a steep
jump around g=γd ¼ 5.8, which is also in very good
quantitative agreement with previous numerical predictions
[66]. In the inset of Fig. 3 we show n↑ as a function of g=γd
and V=γd. For intermediate and large V=γd, n↑ indicates a
sharp increase as g=γd is increased across the first-order
transition. For small V, the change of n↑ appears in a much

broader region, suggesting that the first-order line even-
tually terminates in a critical point.
To investigate the critical behavior of the model, we

determine the susceptibility χðgÞ ¼ ð∂n↑=∂gÞ by taking a
numerical derivative of n↑ with respect to g. We fit χðgÞ to
the Gaussian function fðgÞ¼ χ0exp½ðg−g0Þ2=ð2σ2Þ�, with
χ0, g0, and σ being the fitting parameters. g0 gives the
location of the susceptibility peak, which is indicated as a
dashed line in the inset of Fig. 3. χ0 is the height of the
susceptibility peak, which we use to determine the critical
point below.
To identify the critical point and its properties,

we calculate χ0ðg0Þ for varying system sizes between
10 × 10 and 16 × 16 sites. All simulations employ periodic
boundary conditions. In Fig. 4(a), we show χ0ðg0Þ for the
different system sizes, which displays a susceptibility peak
diverging with system size. The precise nature of this
divergence is controlled by the critical exponents of the
transition, which in the framework of finite-size scaling
theory [69] can be captured as

χ0ðg0; LÞ ¼ Lγ=νf½ðg0 − gcÞL1=ν�; ð8Þ

where L is the linear dimension of the system, gc is the
critical point, and γ and ν are the critical exponents. Because
of the hyperscaling relations [70], which can also be
expected to hold for steady-state transitions obeying thermal
statistics, two critical exponents are sufficient to fix all others
as well. The analytic scaling function fðxÞ is then expanded
as a fourth-order polynomial and fitted to the results of χ0,
which allows us to determine the critical parameters in the
thermodynamic limit. From the fit, we obtain gc=γd ¼
2.94� 0.14, γ¼1.69�0.07, and ν ¼ 0.99� 0.04. Using
these results, we observe all susceptibility data to collapse
on a single line, see Fig. 4(b), which demonstrates that we
have correctly identified the critical exponents. Remarkably,
the values of γ and ν are in very good agreement with

FIG. 3. Liquid-gas transition. The spin-up density n↑ as a
function of g=γd for V=γd ¼ 5 for both the forward (continuous
line) and reverse sweep (dashed line). The inset depicts n↑ as a
function of g=γd and V=γd, where the dashed line is the location
of the susceptibility peak, see the main text. All results are shown
for a 10 × 10 lattice and 3200 trajectories.

(a) (b)

FIG. 4. Driven-dissipative criticality. (a) Value χ0 and position g0 of the susceptibility peak for varying system sizes between 10 × 10
and 16 × 16, derived from Gaussian fits to the susceptibility χðgÞ ¼ ð∂n↑=∂gÞ. Results were obtained using up to 12000 trajectories.
(b) Universal scaling close to the critical point obtained by fitting the susceptibility data to the finite-size scaling function Eq. (8), which
yields the critical exponents γ ¼ 1.69� 0.07 and ν ¼ 0.99� 0.04, and the critical point gc=γd ¼ 2.94� 0.14.
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γ ¼ 7=4 and ν ¼ 1 of the 2D classical Ising model, i.e., the
dissipative Ising model belongs to the same universality
class. Furthermore, the OSDTWAvalue for the critical point
gc=γd ¼ 2.94� 0.14 lies between the predictions from the
variational principle (gc=γd ¼ 2.28 [66]) and cluster mean-
field theory (gc=γd ¼ 4.88 [68]).
Strikingly, the OSTDWA is able to capture fluctuations

beyond mean-field theory, although the Ising interaction is
decoupled on a mean-field level. This can be attributed to
the fact that classical fluctuations are correctly accounted
for in our quantum-jump approach, while quantum fluc-
tuations are irrelevant at the transition due to the presence
of a dynamical symmetry yielding an effective field theory
at finite temperature [37]. Interestingly, in this approach,
the quantum fields are gapped and can be mapped onto
classical fluctuation fields by means of a Hubbard-
Stratonovich transformation [71], which is conceptually
very similar to the random choices of the Sx;y fields
following a quantum jump within the OSDTWA.
Conclusions and outlook.—We have presented a novel

simulation approach for an open quantum system based on
the discrete truncated Wigner approximation. For the para-
digmatic dissipative Ising model on a square lattice, we
arrive at the first prediction of its critical behavior beyond
mean-field theory, which we find to be consistent with the
2D Ising universality class. Importantly, our method can be
expected to give reliable results for a large class of open
quantum many-body systems governed by a dynamical
symmetry. Additionally, despite its computational simplicity,
our OSTDWA method can be used to obtain novel insights
into noncritical many-body problems that are notoriously
hard to simulate, such as strongly interacting Rydberg
polaritons [72–74]. Finally, in future studies it will be
interesting to see whether the OSTDWA can also capture
open many-body systems displaying nonthermal critical
behavior, as it has been recently reported for quantum
versions of absorbing state models [75].

This work was funded by the Volkswagen Foundation,
by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) within Project-ID 274200144–SFB
1227 (DQ-mat, Project No. A04), SPP 1929 (GiRyd),
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QuantumFrontiers–390837967.

Note added.—Recently, we became aware of a related
work employing a quantum state diffusion approach to the
discrete TWA [76].
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