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The heat dissipation in quantum metrology represents not only an unavoidable problem towards
practical applications of quantum sensing devices but also a fundamental relationship between
thermodynamics and quantum metrology. However, a general thermodynamic principle which governs
the rule of energy consumption in quantum metrology, similar to Landauer’s principle for heat dissipation
in computations, has remained elusive. Here, we establish such a physical principle for energy consumption
in order to achieve a certain level of measurement precision in quantum metrology, and show that it is
intrinsically determined by the erasure of quantum Fisher information. The principle provides a powerful
tool to investigate the advantage of quantum resources, not only in measurement precision but also in
energy efficiency. It also serves as a bridge between thermodynamics and various fundamental physical
concepts related in quantum physics and quantum information theory.
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Introduction.—Deeper understanding of thermodynamic
energy cost for information processing, and further reduc-
ing the heat generated by computations have always been
a fundamental goal in information technology [1]. The
ultimate physical limit on energy consumption of compu-
tation is set by Landauer’s principle [2–13]. It states that the
irreversible erasure of information would inevitably dis-
sipate a certain amount of heat into environment, while
reversible operations can in principle be implemented at no
energy cost. Landauer’s principle establishes a fundamental
relationship between information theory and thermody-
namics [14,15]. It represents the philosophy of “informa-
tion is physical” [16], and is the key to the exorcism of
Maxwell’s demon [17–19].
Quantum metrology, as a fast-developing field of quan-

tum technology, achieves highly sensitive measurements of
physical parameters over classical techniques [20–23].
Understanding the quantum limits of quantum metrology,
e.g., in terms of measurement precision and channel
capacity, has yielded fundamental insights into its con-
nections to quantum geometry [24], many-body entangle-
ment [25], and Shannon-Hartley theorem [26]. Similar to
computation, the energy consumption in quantum metrol-
ogy would become an important issue towards potentially
massive applications of quantum sensing devices, and
represents a fundamental link between thermodynamics
and quantum metrology. So, is there a general principle that
determines the limit of energy cost in quantum metrology?
The analysis of certain examples hints that work cost might
be relevant in quantum metrology [27–29]. But these

attempts are confined to specific models, and do not
provide a complete answer. Here we take a very different
approach and establish a fundamental principle for heat
dissipation in quantum metrology.
As our main result, we find the physical limit on energy

consumption of quantum metrology, and demonstrate that
it essentially arises from the erasure of quantum Fisher
information (QFI) which determines the best achievable
measurement precision [24]. The result establishes a basic
thermodynamic principle for quantum metrology, and
clearly states the thermodynamic cost in order to achieve
a certain level of measurement precision. We provide an
efficient way to investigate energy efficiency of multiqubit
states for quantum metrology, and point out that it is
possible to achieve the Heisenberg limit of measurement
precision with energy consumption that does not increase
with the number of probes. Furthermore, the QFI plays
important roles in various fundamental quantum phenom-
ena, such as multipartite entanglement [30–33], quantum
criticality [34], and quantum geometry [24]. Therefore, the
present thermodynamics of quantum metrology would
inspire us to explore the thermodynamic meaning of the
related physical concepts involved in these phenomena.
Background on quantum metrology.—In quantum met-

rology, one generally prepares a quantum probe system in
an initial state ρ0 ¼ jψihψ j, which subsequently undergoes
a parameter-dependent evolution Uλ to the final state ρλ ≡
jψλihψλj ¼ Uλρ0U

†
λ [35–38]. In order to access information

about the parameter, quantum metrology requires us to
perform measurement on the parametrized state ρλ. Such a
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measurement in the basis of fjmihmjgdm¼1 (d is the
dimension of the system) can be described as [18,39]

M∶ρλ ⊗ jxihxj →
X
m

αλmjmihmj ⊗ jxmihxmj; ð1Þ

where αλm ¼ hmjρλjmi, and fjxmig represents the internal
structure of a memory, interacting with the system and
storing the measurement outcomes, see Fig. 1(a). The
ultimate precision of parameter estimation, achieved by
performing optimal measurements on ρλ, is determined by
the QFI,

FQ½ρλ� ¼ 4½h∂λψλj∂λψλi − jhψ j∂λψλij2�; ð2Þ

that represents a measure of how much information a
parametrized quantum state contains about the unknown
parameter [24].
Main result.—In the standard framework of quantum

metrology, see Fig. 1(a), the parameter information is
transferred to the memory after the measurement. A unitary
operation conditional on the memory’s state brings the
system back to the initial state without heat dissipation into
environment because of its reversibility [40,41]. In order to
realize a closed metrological cycle, the memory must be
recovered to its original standard state jxi, leading to
a heat dissipation ΔQλ

E into environment according to
Landauer’s principle. Given an optimal measurement basis

fjmλihmλjgdm¼1 defined by the symmetric logarithmic
derivative (SLD) [23,24], the Shannon entropy, S ¼
−
P

m αλm logðαλmÞ with αλm ¼ jhmλjψλij2, which quantifies
the amount of information associated with the measurement
outcomes, is found to be determined by the QFI [41],
namely,

S ≥ logð2Þkhλk−2FQ½ρλ�; ð3Þ

where hλ ¼ iU†
λ∂λUλ represents the local generator of

parametric translation, and khλk denotes the operator
seminorm [35]. The result in Eq. (3) relates two informa-
tion-theoretic quantities of particular interest in different
fields, i.e., the QFI in quantum metrology and the Shannon
entropy in information theory. It opens the possibility of
establishing a relationship connecting quantum metrology
and thermodynamics, as illustrated by the following
theorem [41].
Theorem 1.—Given an environment of temperature T,

the heat dissipation to extract the parameter information via
an optimal measurement protocol determined by the SLD
on the parametrized state ρλ ¼ Uλρ0U

†
λ (with ρ0 ¼ jψihψ j)

is lower bounded by

ΔQλ
E ≥ logð2ÞkBTkhλk−2FQ½ρλ�; ð4Þ

where kB is the Boltzmann constant, and hλ is the local
generator of parametric translation.
Theorem 1 straightforwardly leads to some important

implications in quantum metrology. In the traditional
scenario of quantum metrology, one typically considers
interrogation Hamiltonians of the form [35], which have
been implemented in a number of systems [20–23],

Hλ ¼ λh: ð5Þ

The local generator of the above Hamiltonian is given by
hλ ¼ ht with t the interrogation time. Without loss of
generality, we assume a normalized energy scale by
requiring the operator seminorm khk ¼ 1 [35]. Stated by
the so-called quantum Cramér-Rao bound (CRB) [24], the
measurement precision as quantified by the variance of
unbiased estimators [46,47] for the parametrized state ρλ
is lower bounded by ðδλÞ2 ≥ F−1

Q ½ρλ�. According to
Theorem 1, we find that the ultimate measurement pre-
cision is limited by the interrogation time t and heat
dissipation ΔQλ

E as

ðδλÞ2 ≥ logð2Þ
t2

kBT
ΔQλ

E
: ð6Þ

This result implies that a certain level of measurement
precision would set a constraint on the interrogation time or
the heat dissipation.

(a) (b)

FIG. 1. Heat dissipation in quantum metrology. (a) In standard
quantum metrology, after the interrogation for time t, the para-
metrized final state jψλi is measured, which provides information
on the unknown parameter λ. To realize a closed metrological
cycle, both the quantum probe system and the memory need to be
recovered to their initial states. A unitary operation can evolve the
system into its initial state j0i without heat dissipation; while the
erasure of information stored in the memory about the measure-
ment outcomes inevitably results in heat dissipation. (b) The QFI
characterizes the distinguishability between neighboring para-
metrized quantum states ρλ and ρλþδλ, which is erased as they are
transformed into a parameter-independent state ρ via the map Es
(blue line). The erasure of QFI during this process will cause heat
dissipation or entropy increase, see Eq. (9). A possible sub-
sequent operation (green line) that transforms ρ back to the initial
pure state may dissipate additional heat into environment accord-
ing to Landauer’s principle.
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To characterize the overall thermodynamic performance
of a typical quantummetrology setting, we average the heat
dissipation ΔQE ¼ hΔQλ

Ei over all possible values of the
unknown parameter λ. In the metrological framework based
on the interrogation Hamiltonian in Eq. (5), starting from a
pure initial state jψi, the parametrized final state is given by
ρλ ¼ jψλihψλj. Here jψλi ¼ e−iHλtjψi takes the simple
form of a linear superposition jψλi ¼

P
a cae

−iaλtjai in
the eigenbasis defined by h (i.e., hjai ¼ ajai) with
coefficients ca. Note that the QFI FQ½ρλ�≡ FQ is inde-
pendent of the parameter λ in this scenario [41]. Since the
parameter λ is unknown, we shall introduce a density
matrix to describe the ensemble of λ parametrized quantum
states fρλg, which is denoted as ρs ¼ hρλi. For a general
measurement protocol which is not necessarily optimal, we
obtain that [41]

S ≥ SðρsÞ ≥ logð2Þt−2FQ: ð7Þ

Here, S is the Shannon entropy of the measurement
outcomes stored in the memory [see Fig. 1(a)], and SðρsÞ ¼
−trðρs log ρsÞ represents the von Neumann entropy of the
density matrix ρs. As ΔQE ≥ kBTS stated by Landauer’s
principle, Eq. (7) straightforwardly leads to ΔQE ≥
kBTSðρsÞ, namely,

ΔQE ≥ logð2ÞkBTt−2FQ: ð8Þ

Erasure of quantum Fisher information.—The physical
limit on energy consumption in the above quantum
metrological framework is derived from the perspective
of measurement. Similar to Landauer’s principle, which
relates the energy cost in computations with the erasure of
information, we demonstrate that the heat dissipation in
quantum metrology is essentially determined by the erasure
of QFI. The measurement process shown in Fig. 1(a) erases
the QFI of the entity including the probe system and the
memory, which can be represented by a “many-to-one”
map Es∶jψλihψλj ⊗ jxihxj → j0ih0j ⊗ jxihxj for arbitrary
λ. The erasure of QFI can be realized by a map of the more
general form Es∶jψλihψλj → ρ via the interaction with
environment. Such a map transforms the system into a
parameter-independent state ρ that contains no information
on the unknown parameter λ. Following Landauer’s prin-
ciple in the quantum regime [44] and using the inequality in
Eq. (7), we find that [41]

ΔQE þ kBTSðρÞ ≥ logð2ÞkBTt−2FQ; ð9Þ

where ΔQE represents the heat dissipation induced by the
QFI-erasure map Es averaged over all possible values of the
unknown parameter λ, and SðρÞ denotes the von Neumann
entropy of the parameter-independent state ρ.
The result in Eq. (9) implies that the erasure of QFI leads

to either heat dissipation into environment (i.e., ΔQE), or

entropy increase of the system from the pure state jψλi to a
possible mixed state ρ. One notes that a subsequent
transformation of the parameter-independent state ρ into
the initial state ρ0 may also dissipate heat according to
Landauer’s principle. Therefore, the overall heat dissipation
will be lower bounded by the right-hand side of Eq. (9),
which is consistent with the result in Eq. (8). We remark
that the thermodynamic bound for the erasure of QFI
can be further improved to QsðΔFÞ [41] with ΔF ¼
logð2Þt−2FQ − SðρÞ via the low-temperature correction
[45]. Below we illustrate the behavior of the bound in
Eq. (9) using two well-known examples, i.e., the quantum
Rabi model and the pure dephasing process.
In the first example of quantum Rabi model, a qubit-

probe system in the parametrized state jψλi interacts with
environment, i.e., the bosonic mode initially in a thermal
equilibrium state. The global dynamics is governed by the
Hamiltonian H ¼ ðΩ=2Þσz þ ωa†a − gðaþ a†Þσx, where
a is the bosonic mode and σx;z are Pauli matrices. After a
certain evolution time, the qubit probe evolves into an
approximately identical final state for different values of the
parameter λ [41]. In Fig. 2, we show the heat dissipation
into the bosonic mode ΔQE and the corresponding bound
from initial states that give rise to different QFI. The results
confirm that the heat dissipation is lower bounded by the
QFI and the entropy increase of the qubit-probe system.

FIG. 2. Erasure of quantum Fisher information via single
bosonic mode environment. Starting from the parametrized
states jψλi ¼ exp½−iðλσz=2Þt�ðc0j0i þ c1j1iÞ with the QFI FQ ¼
4jc0j2jc1j2t2, the qubit-probe system approximately evolves into
the ground state j0i for different values of λ after a certain time
interacting with the environment of a bosonic mode. The blue
diamonds and the red circles correspond to the thermodynamic
bound QsðΔFÞ and the exact heat dissipation, respectively,
caused by the erasure of QFI. In addition, the inset shows the
exact value of the von Neumann entropy SðρsÞ (circles) and the
bound logð2Þt−2FQ (solid line) given in Eq. (7) for different
values of QFI. The parameters are ω ¼ Ω ¼ 1, g ¼ 0.05, and the
erasure time is τ0 ¼ 30.8. The bosonic mode is initially in a
thermal state at a temperature T ¼ 0.3.
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In the second example, we consider a spin-1
2
probe

system coupled with a spin-bath environment via the
Ising-type interaction. Under the assumptions of a large
spin bath and weak coupling, the system undergoes a
pure dephasing process. When the QFI is completely
erased, the system evolves from parametrized states
jψλi ¼ ð1= ffiffiffi

2
p Þðj ↑i þ e−iλtj↓iÞ to the mixed state ρ ¼

ð1=2Þðj ↑ih↑ j þ j↓ih↓jÞ for arbitrary λ. During this proc-
ess, there is no energy exchange between the probe system
and the spin bath, i.e.,ΔQE ¼ 0. The physical consequence
arising from the erasure of QFI becomes entropy increase
of the probe system, which equals to the bound set by the
QFI, namely SðρÞ ¼ logð2Þt−2FQ ¼ logð2Þ.
Application to multiqubit quantum metrology.—As a

unique advantage, quantum metrology based on multiqubit
entangled states can beat the standard quantum limit (SQL)
of measurement precision [20]. We consider symmetric
multiqubit states, which include a wide range of entangled
states that can surpass the SQL such as squeezed spin
states, twin-Fock states and GHZ states [22]. Using the
basis of Dicke states fjDk

NigNk¼0 (N is the system size), the
symmetric multiqubit states can be expanded as follows

jψi ¼
XN
k¼0

ckjDk
Ni; ð10Þ

where fpk ¼ jckj2gNk¼0 is the corresponding probability
distribution function [22].
We choose the interrogation Hamiltonian as Hλ ¼

λ
P

j σ
z
j=2, and consider four types of symmetric multiqubit

states, the probability distribution functions of which are
shown in Figs. 3(a)–3(d). In this scenario, the average

heat dissipation is lower bounded as ΔQE ≥ kBTSðρsÞ
[see Eq. (7) and (8)], thus we compare the von Neumann
entropy SðρsÞ for these different symmetric multiqubit
states. It can be seen that the scaling of the von
Neumann entropy with the system size can be fitted by
functions of the form SðρsÞ ¼ α logðNÞ þ β for product
states (a), squeezed states (b), and twin-Fock states (c).
Figure 3(d) shows a different type of symmetric multiqubit
states with a probability distribution function pðGÞ

k ∼
exp½−k2=2ν2� þ exp½ðN − kÞ2=2ν2� (referred to as GHZ-
like states below). Particularly, we arrive at the GHZ state in
the limit of ν → 0. It is remarkable that the von Neumann
entropy SðρsÞ for GHZ-like states saturates to a constant
value in the large N limit, which further implies that the
physical limit on energy consumption of quantum metrol-
ogy would not increase with the number of qubits involved.
Our results demonstrate that, although squeezed spin states,
twin-Fock states, and GHZ-like states can all beat the SQL
of measurement precision [41], their energy efficiencies in
quantum metrology are radically different. The GHZ-like
states represent a class of resource states for quantum
metrology that can offer superior advantages not only in
measurement precision but also in energy consumption.
Such an interesting phenomenon of energy consumption

in multiqubit quantum metrology results from the fact that
the von Neumann entropy SðρsÞ is related to a weighted
summation of the QFI, FQ, contributed by all level pairs,
namely,

SðρsÞ ≥ FQ ¼ 1

t2
X
a<b

Fab
Q

2ða − bÞ2 log
�

2

pa þ pb

�
; ð11Þ

where Fab
Q represents the QFI contributed by the level pair

ða; bÞ, the direct summation of which equals to the total

(a) (b) (c) (d)

FIG. 3. Von Neumann entropy of quantum metrology based on symmetric multiqubit states. The upper panels depict the probability

distribution functions fpðPÞ
k ; pðSÞ

k ; pðTÞ
k ; pðGÞ

k g for four types of symmetric states: product states (a), squeezed states (b), twin-Fock states
(c), and GHZ-like states (d). The lower panels show the corresponding von Neumann entropy SðρsÞ (red circles), the first three ones of
which are well fitted by the logarithmic functions of a form ∼α logðNÞ þ β (solid line) with α ≈ 0.51, β ≈ 0.7 for (a), α ≈ 0.95, β ≈ 0.17
for (b), and α ≈ 0.84, β ≈ −0.52 for (c). In panel (d), the von Neumann entropy SðρsÞ saturates to a constant value for a large N. In (a)–
(d), the weighted quantum Fisher information FQ (blue diamonds) [Eq. (11)] shows the same scaling feature as the von Neumann
entropy SðρsÞ.
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QFI FQ [41]. It can be seen from Fig. 3 that FQ provides a
well-behaved bound for SðρsÞ, and reveals its scaling
feature. Therefore, by focusing on the weighted QFI FQ,
we are able to analyze energy consumption and engineer
suitable quantum resource states in order to reduce heat
dissipation while sustaining high measurement precision.
Summary and outlook.—The work establishes a funda-

mental link between the concepts of entropy, QFI and heat
dissipation, and clearly states the physical limit on energy
consumption of quantum metrology to achieve a certain
level of measurement precision. These results are generally
relevant only in the asymptotic and local regimes of
quantum estimation theory. It would be interesting to
extend them into more realistic scenarios with prior
information beyond the quantum CRB [46–53]. The
revealed thermodynamic principle for quantum metrology
provides a new perspective to explore quantum advantage,
apart from the considerable focusing on the measurement
precision, offered by quantum resources. We show that
multiqubit states that can achieve similar performances in
measurement precision may demonstrate very different
energy efficiencies. Besides, the QFI, equivalent to quan-
tum metric, can characterize the property of a given band
defined over the Brillouin zone [54–57]. Therefore, the
present connection between quantum Fisher information
and thermodynamic quantities may offer a new way to
explore the topological properties of energy bands from a
thermodynamic perspective.
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