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A potential for propagation of a wave in two dimensions is constructed from a random superposition of
plane waves around all propagation angles. Surprisingly, despite the lack of periodic structure, sharp Bragg
diffraction of the wave is observed, analogous to a powder diffraction pattern. The scattering is partially
resonant, so Fermi’s golden rule does not apply. This phenomenon would be experimentally observable by
sending an atomic beam into a chaotic cavity populated by a single mode laser.
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Monochromatic light or matter waves entering a per-
fectly periodic medium show sharp Bragg scattering into
specific angles. However, randomly disturbing the perfect
lattice positions results in diffuse scattering between the
Bragg peaks. As the dispersion increases, the diffuse
scattering eventually dominates and finally the Bragg peaks
vanish. The diffuse scattering is structured, revealing
correlations in the medium. For example, for x-ray scatter-
ing in water [1,2] and the scattering of visible light in
disordered packing of monodisperse polystyrene beads
[3,4], the pair correlation function has a broad peak with
a characteristic length scale, which in turn generates a
broad peak in the structure function.
In the studies of disordered media, the Bragg peaks are

associated with periodic structures [5,6]. It is not expected,
however, that a random medium, with no perfect order on
any scale, can generate sharp scattering angles, yet we
report such a case here. For the potential we choose, the
spatial autocorrelation function has broad peaks as the atom
pair correlation function in water, but the scattering angle
nonetheless is very sharp. This is startling; the scattering in
the random potential defined below is like Bragg scattering
in a periodic potential, rather than the scattering in a
correlated liquid. The closest analog—though not a perfect
one—is powder diffraction with many randomly oriented
crystallites packed closely. The potential defined below has
no such “crystallites,” yet it has Bragg peaks. We explain
this surprise by calculating scattering matrix elements, or,
equivalently, by examining the Fourier components of the
potential. However, the time evolution of the scattering is
not compatible with Fermi’s golden rule, as discussed
below.
We consider the following form of random potential

Vðr⃗; fϕjgÞ ¼
Affiffiffiffi
N

p
XN
j¼1

cosðq⃗j · r⃗þ ϕjÞ; ð1Þ

where A is a constant having the dimension of energy, N is
the number of modes, q⃗j ¼ jq⃗jjðx̂ cos θj þ ŷ sin θjÞ are
wave vectors, and θj ¼ 2πðj − 1Þ=N are angles equally
spaced over 2π. This is a superposition of N plane waves of
an equal amplitude A each propagates in different direc-
tions with a wave number jq⃗jj, an angle θj, and a random
phase shift ϕj. It is not important that the angle be equally
spaced, or the amplitudes be the same, as long as they are
random.
For simplicity, we consider a random potential con-

structed by equal wave number jq⃗jj ¼ q (see Supplemental
Material [7] for more general potentials). We call this a
“Berry potential,” a function introduced in connection with
wave chaos [8,9]. This random potential is experimentally
realizable in a laser cavity with a single mode laser (need
not be single) with rough or ballistically chaotic walls, so
that the wave inside is a random superposition of waves
traveling in all directions.
In the limit of many modes N → ∞, the spatial

autocorrelation of the potential is (see Supplemental
Material [7])

Cðδr⃗Þ ¼ hVðr⃗ÞVðr⃗þ δr⃗Þi ¼ A2

2
J0ðqδrÞ;

where J0 is the zeroth-order Bessel function of the first
kind. From the autocorrelation, we can obtain the root-
mean-square of the potential

Vrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(Vðr⃗Þ)2i

q
¼

ffiffiffiffiffiffiffiffiffiffi
Cð0Þ

p
¼ A=

ffiffiffi
2

p
:

We study the dynamics of wave packets with an initial
average momentum ℏk in the Berry potential Vðr⃗Þ employ-
ing the second order split operator method [10]. To have a
“weak” disorder strength, set the constant A such that the
fluctuation of the potential Vrms is far smaller than the
average kinetic energy of the wave hTi ¼ ðℏ2k2=2mÞ, i.e.,
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Vrms ≪ hTi. Consideration of strong disorder strength
Vrms ≳ hTi is for future study [11].
Figure 1 shows the propagation of a wave packet in the

Berry potential. The potential is drawn in gray scale on the
background. There is a flat zero potential on the top and
the Berry potential is smoothly turned on toward the bottom.
An initial wave packet on the top launched downward into
the potential with an average momentum ℏk⃗ is depicted in
green and magenta scale. The wave function at a later time is
shown in red and blue scale. The wave is scattered by the
random potential, initially only to the Bragg angle, but this is
soon scattered againwith the sameBragg angle relative to the
motion, and so on. This scattering should not be confused
with the higher order Bragg scattering that is absent if the
Berry potential is composed only of sinusoids. The higher
order scattering would be allowed if instead triangular waves
were used, for example.
The inset in Fig. 1 shows the probability density of the

wave at a later time in the reciprocal space in blue scale.
The initial k⃗1, final k⃗2, and scattering q⃗ wave vectors are
shown as in Ewald sphere construction [12,13]. For a given
initial wave vector k⃗1, the contour of equal energy can be
drawn as a black circle. In addition, taking k⃗1 as an origin,
the nonzero Fourier components of the potential can be
drawn as a magenta circle. Then, the Bragg scattered states
appear at the intersections of the black and magenta circles
[14]. It is seen that the scattered waves are populated only at

a Bragg angle. In three dimensions, the construction
involves the intersection of spheres and thus the outgoing
wave vectors k⃗2 will lie on a ring corresponding to a
Bragg angle.
The Bragg scattering of the wave in the Berry potential

can roughly be interpreted as a superposition of the
scattered waves by each constituent sinusoidal potential
aligned in different directions. The situation is analogous to
powder x-ray diffraction in which crystallites are aligned in
all possible orientations, leading to the incoherent super-
position of the outgoing waves from scattering by the
crystallites. The conventional picture is that the scattering
by some of the crystallites oriented properly with respect to
incident x-ray beam leads to Bragg scattering, although this
view has been challenged [15] in ways that are relevant to
our present observations. Again there are no crystallites
here, but the Berry potential bears some relation to the
impossible limit of overlapping and blending them. In three
dimensions, the scattered waves from the Berry potential
will form a ring as is the case in the powder diffraction.
Employing the analogy above, by treating the wave-

length 2π=q of the single sinusoid in the Berry potential as
a “lattice spacing,” one can write down the Bragg condition
nð2π=kÞ ¼ 2ð2π=qÞ sin θ, which correctly explains our
simulation result. Note only the first order (n ¼ 1)
Bragg angle θB satisfying ð2π=kÞ ¼ 2ð2π=qÞ sin θB is
observed. Higher order (n ¼ 2; 3;…) Bragg angles will
be observed if triangular, instead of sinusoidal, waves are
used. Nevertheless, this analogy is not perfect since, in the
random Berry potential, the superposition of the scattered
waves by each sinusoidal component is coherent, rather
than incoherent, which was the case in the powder
diffraction as the phases of scattered waves from one
crystallite to another do not match. The Berry potential
coherence effect is manifested in the rapid growth of the
scattered wave population as discussed below.

Consider scattering matrix element hk⃗2jVjk⃗1i ∼ Vk⃗2−k⃗1
,

where jk⃗1i and jk⃗2i are plane wave states and Vk⃗2−k⃗1
is the

Fourier component of the potential. For elastic scattering

(jk⃗1j ¼ jk⃗2j ¼ k), the scattering wave vector q⃗ ¼ k⃗2 − k⃗1
and scattering angle 2θ satisfy q ¼ 2k sin θ, which coincide
with the Bragg condition nð2π=kÞ ¼ 2ð2π=qÞ sin θ for
n ¼ 1. Thus, allowed elastic scattering can actually be
interpreted as Bragg scattering by a plane wave “lattice” of
one sinusoidal component of the potential properly aligned
with respect to the incident beam direction. The random
Berry “medium” has no special directions of travel; all
are equivalent and subject to Bragg diffraction at relative
angle θ.
The scattering behavior of the wave varies considerably

depending on its wavelength 2π=k compared to the wave-
length of the sinusoids 2π=q used in the Berry potential. To
understand the effect of length scales, we compare wave
scattering for different values of reduced Planck’s constant

FIG. 1. Bragg scattering of a wave packet in a random (Berry)
potential. The potential is drawn in gray scale on the background.
An initial wave packet on the top launched downward into the
potential with an average momentum ℏk⃗ is depicted in green and
magenta scale. The wave function at a later time is shown in red
and blue scale. The inset shows the probability density of the
wave at a later time in the reciprocal space in dark blue scale.
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ℏ, keeping the average momentum of the wave ℏk fixed. By
keeping the momentum the same, the wave propagation
speed and kinetic energy are kept the same for different ℏ’s,
so the only physical difference comes from different
wavelengths.
Depending on the value of ℏ (so the wavelength), the

wave packet scattering exhibits qualitatively different
behaviors as shown in Fig. 2. For small ℏ, i.e., k ≫ q
(small wavelength and classical limit), the wave dynamics
is particlelike, diffusive, showing branched flow [16]. This
is consistent with a very small Bragg angle which leads to
almost-forward scattering. For intermediate ℏ, i.e., k ∼ q
the Bragg angle cannot be treated to be small which results
in less classical looking and diffractive behavior. For large
ℏ, i.e., k ≪ q the wave is in a transparency regime; the
wavelength is large enough that the smaller scale fluctua-
tions of the potential are averaged to zero. Equivalently, in
reciprocal space, there are no intersections between the
energy contour and the nonzero Fourier components of the
potential. Therefore, there is effectively no scattering, and
the potential is transparent.
The first-order time-dependent perturbation theory gives

the first-order correction to the wave function [17]

ψ ð1Þðr⃗; tÞ ¼
Z

t

0

ϕðr⃗; t0Þdt0; ð2Þ

where the instantaneous scattered amplitudes ϕðr⃗; t0Þ ¼
ð1=iℏÞe−iTðt−t0Þ=ℏVðr⃗Þe−iTt0=ℏψðr⃗; 0Þ at different times t0

interfere to form ψ ð1Þðr⃗; tÞ. Figure 3 shows the first-order
wave function ψ ð1Þðr⃗; tÞ from the wave packet initially
launched downward. One can see the interference pattern
formed by the superposition of ϕðr⃗; t0Þ at different times t0.

Also, the first-order wave function ψ ð1Þðr⃗; tÞ depends on the
size and shape of the initial wave function ψðr⃗; 0Þ and the
region of the potential the wave is spatially lying on.
The asymmetry of the scattered waves shown in Figs. 1–3
is due to the asymmetry of the region of the potential right
underneath the wave. This is not captured by the usual
plane wave perturbation theory which predicts the sym-
metry of the scattered waves.

FIG. 2. Dependence of the wave evolution on ℏ. The real part of the wave function is plotted in red and blue scale and an inset in each
panel shows the probability density distribution in the reciprocal space. For small ℏ, i.e., k ≫ q (small wavelength and classical limit),
the wave dynamics is particlelike, diffusive, showing branched flow [16]. This is consistent with a very small Bragg angle which leads to
repeated almost-forward scattering. For intermediate ℏ, i.e., k ∼ q the Bragg angle is not small, giving less classical-like diffractive
behavior. For large ℏ, i.e., k ≪ q the wave is in a transparency regime: the wavelength is large enough that the small scale fluctuations of
the potential are averaged to zero. Or equivalently, in reciprocal space, there are no intersections between the energy contour and the
nonzero Fourier components of the potential. Therefore, there is effectively no scattering, and the potential is transparent.

FIG. 3. The real part of the first-order wave function ψ ð1Þðr⃗; tÞ
from a wave packet initially launched downward, showing the
interference of the instantaneous scattered amplitudes from
different times.
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One can calculate the population hψ ð1ÞðtÞjψ ð1ÞðtÞi of the
scattered waves from the first-order perturbation theory.
The populations near the Bragg angle θB (so the scattering
angle 2θB) were calculated in the simulation and compared
with the perturbation theory as shown in Fig. 4. The
nonlinear population growth indicates the breakdown of
Fermi’s golden rule. This behavior combines aspects of
both resonant and nonresonant decay, which depends on
the specifics of the interference of the scattered amplitudes
ϕðr⃗; t0Þ in space and time [17]. Furthermore, the sometimes
strong and irregular population growth oscillations are
captured in the first-order time-dependent perturbation
theory, explaining the sporadic pulses (scattered wave)
coming out as shown in Figs. 1 and 2. Again, the plane
wave perturbation theory does not correctly predict the
population growth.
It is worth emphasizing the explanations given are not

restricted to the two dimensional Berry potential, but are
valid for more complicated forms of random potentials and
in three dimensions as well. We checked the validity for
more general two dimensional random potentials where the
wave numbers jq⃗jj of the modes are different and even
forming a “band” in reciprocal space (see Supplemental
Material [7]). Also, as the explanations do not employ any
specific property of two-dimensionality, they are expected
to be valid in three dimensions as well.
Interestingly, there exists a momentum localization for

special Bragg angles as shown in Fig. 5. A snapshot of the
wave is shown after long propagation of a plane wave
launched downward, in a 90° scattering (45° Bragg angle)
situation. Of course, the scattered wings again rescatter at

90°, and so on. There may result a permanent localization
only to vertical and horizontal motion.
If the diffraction angle is 2π=N where N is a positive

integer, the scattered wave comes back to the original inci-
dent angle after N scatterings, so the momentum distribu-
tion does not fill in the whole range of 2π. The special
angles show localization of the wave in momentum space,
assuming the initial wave packet is narrow enough in mo-
mentum space. In three dimensions, the situation is a little
bit different from two dimensions, and the momentum loca-
lization will be possible only for scattering angle π [18].
We would like to emphasize that the presented results

apply to any linear wave transport: not only to matter
waves, but also to acoustic and electromagnetic waves.
The Berry potential may be used as a diffraction grating

in the diffractive regime. If the incident beam is white,
after passing the Berry potential, it will be broken into its
constituent colors since different colors have different Bragg
angles. The difference between the usual diffraction gratings
and the Berry potential is that the diffraction pattern from the
latter will be independent of the incident beam directions
since the Berry potential is isotropically random.
In conclusion, although a random (Berry) potential

lacks periodicity, sharp Bragg diffraction of the wave is
observed in the potential, analogous to a powder diffraction
pattern. Fermi’s golden rule breaks down since the scatter-
ing is partially resonant. This phenomenon would be

FIG. 4. Population of the scattered waves as a function of time.
Blue and red curves correspond to simulation and first order time-
dependent perturbation theory results, respectively. The popula-
tion growth is not linear, i.e., Fermi’s golden rule is not valid.
Also, the population growth stops occasionally, showing that the
pulses (scattered waves) come out sporadically as shown in
Figs. 1 and 2. The two results coincide at early times when single
scattering dominates. The discrepancy later is due to multiple
scattering, absent in the first order time-dependent perturbation
theory.

FIG. 5. Bragg scattering in a Berry potential: a special case of
the 90° scattering angle. The real part of the wave function was
plotted in red and blue scale. The inset shows the momentum
space probability distribution of the wave. This is a snapshot,
after a long time propagation of a downward launched wave
packet. It is not diffusing in angle beyond the 90° turns, in spite of
the random nature of the potential. A periodic boundary condition
is used.
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experimentally realizable by sending an atomic beam into a
chaotic cavity populated by a single mode laser.

MATLAB codes implementing the split operator method
can be found in Ref. [19].
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