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We study a mean field elastoplastic model, embedded within a disordered landscape of local yield
barriers, to shed light on the behavior of athermal amorphous solids subject to oscillatory shear. We show
that the model presents a genuine dynamical transition between an elastic and a yielded state, and
qualitatively reproduces the dependence on the initial degree of annealing found in particle simulations. For
initial conditions prepared below the analytically derived threshold energy, we observe a nontrivial,
nonmonotonic approach to the yielded state. The timescale diverges as one approaches the yielding point
from above, which we identify with the fatigue limit. We finally discuss the connections to brittle yielding
under uniform shear.
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The behavior of amorphous solids (characterized by the
lack of any regular structure) under deformations is of great
practical importance, and has long been an active topic
because the disorder inherent in these systems poses a
significant challenge to their understanding [1–3]. These
materials typically show yielding behavior: although they
behave elastically at small deformation, plastic deformation
eventually sets in, leading to a flowing state. Given the
large variety of amorphous solids, ranging from hard
metallic glasses to soft colloidal gels or emulsions, so-
called elastoplastic models [3] aim for a unified description
from a statistical physics point of view.
A key aspect of yielding under uniform shear, which has

received much attention recently [4–10], concerns the
dependence on the initial degree of annealing—quantified
by potential energy—of the amorphous solid (or “glass” for
short) before deformation starts. Typically, it is found that
poorly annealed glasses yield in a smooth, ductile manner,
with plastic deformation appearing gradually, while well
annealed glassesmay yield in a brittle manner, accompanied
by amacroscopic stress drop. Under start-up of steady shear,
although some features are still debated [9], there is strong
evidence that, at least in the brittle case, and under quasistatic
loading, yielding corresponds to a discontinuous nonequili-
brium transition, which in finite-dimensional systems is
accompanied by the sudden appearance of a unique system-
spanning shear band [5–8].
Yielding under oscillatory shear has until recently

received less attention, although it may in some respects

be a more informative protocol than the uniform case. One
advantage is that one may directly probe the steady state
after many cycles both below and above the yield point,
whereas in the uniform case the states up to yielding are
inherently transient. Furthermore, oscillatory strain allows
one to relate macroscopic yielding directly to a sharp
absorbing-to-diffusive transition in the nature of the micro-
scopic trajectories [11–15] and to shear jamming [16–20].
Behavior under oscillatory shear also shows intriguing

dependencies on the initial degree of annealing. Atomistic
simulations of model glasses [21–23] reveal the appearance
of a threshold initial energy. Samples prepared above this
threshold showmechanical annealing up to a common strain
amplitude, the yield point, where the energy achieves the
threshold value irrespectively of the initial condition. On
approaching the yield point in strain, the timescale to anneal
to the threshold energy appears to diverge [11,13–15]. On
the other hand, samples prepared below the threshold are
insensitive to shear up to an initial condition-dependent
critical strain above the common yield point, where they then
yield abruptly.
Recent attempts to tackle this problem include energy

landscape based [24,25] and 2D lattice elastoplastic models
[26,27]. While the elastoplastic models [26,27] defy ana-
lytical progress as they implement the full spatial interaction
kernel, the approach of Ref. [25] ignores interactions
between elements, and indeed does not display a genuine
yielding transition as the steady state after sufficiently many
cycles is always elastic. An Ehrenfest-type model has also
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been proposed along these lines [28]. This incorporates a
simplified form of mechanical noise but does not explicitly
represent oscillatory shear.
Here, we consider a model with a single element

description that is similar to Refs. [25,26] in the way that
it accounts for the disordered energy landscape, while
including the elastic interactions in a mean field manner
that allows for analytical progress. Importantly, we find a
steady state yielding transition and are able to reproduce
qualitatively all the main features of yielding under
oscillatory shear described above.
Disordered HL model.—The Hébraud-Lequeux (HL)

model for the rheology of amorphous solids [29] is a
mean field mesoscopic elastoplastic model, which despite
its many idealizations has had remarkable successes and
been widely studied [30–36]. The material is conceptually
divided into mesoscopic elements, large enough to carry a
local elastic strain l and stress σ ¼ kl; these are related by
an elastic modulus k that is considered to be uniform
throughout the system for simplicity. In the elastoplastic
approach, the dynamics of the elements is described as
consisting of periods of elastic loading interrupted by
plastic events that are accompanied by a local stress drop.
In a mean field fashion, the effect of stress propagation
from other yield events is considered as a mechanical noise
[3,32], leading to a diffusive dynamics in the local strain l
(or equivalently the stress).
In the original HL model [29], all elements have a

common strain threshold related to the common yield energy
E as lc ¼

ffiffiffiffiffiffiffiffiffiffiffi

2E=k
p

. However, due to the oversimplification
of considering one single energy barrier throughout the
system, this model is unable to capture the rich phenom-
enology under oscillatory shear found in particle simula-
tions, for which it is essential to take into account the full
energy landscape each mesoscopic element has access to.
An extension of the HL model to include this energy

landscape, following previous approaches such as the soft
glassy rheologymodel [37], was introduced inRef. [32]. The
essential ingredient is the disorder in the depth E of the
energy minima relative to a common reference energy,
characterized by a distribution ρðEÞ. Each time an element
yields, it occupies a new local minimum with a depth
extracted from this distribution. The depth E of the current
local energy minimum is thus promoted to a stochastic
variable, and the system is described by a joint distribution
PðE; lÞ evolving as

∂tPðE; l; tÞ ¼ −_γ∂lPþDðtÞk−2∂2
l P

þ YðtÞρðEÞδðlÞ− τ−1pl θðjlj−
ffiffiffiffiffiffiffiffiffiffiffi

2E=k
p

ÞP ð1Þ

with

YðtÞ ¼ 1

τpl

Z

∞

0

dE
Z

∞

−∞
dl PðE; l; tÞθ

�

jlj −
ffiffiffiffiffiffi

2E
k

r

�

ð2Þ

where θ and δ denote the Heaviside and delta functions,
respectively, and _γ is the applied shear rate. τ−1pl , the plastic
rate, is the rate at which a plastic event occurs once an
element is strained beyond its yield threshold. We fix
energy and time units by setting k ¼ 1 and τpl ¼ 1. The
quantity YðtÞ in Eq. (2) is the yield rate, i.e., the fraction of
elements that yield per unit time. The key feature of the
model is the closure relation relating the yield rate to the
diffusion constant DðtÞ. We adopt the simple proportion-
ality DðtÞ ¼ αYðtÞ [29]. The coupling constant α effec-
tively sets the strength of the interactions, and under certain
assumptions can be directly related to the elastic stress
propagator [32,38]. In the Supplemental Material [39] we
check that a more general closure relation, which reflects
the fact that yield events contribute differently to the noise
depending on their local barrier, leaves the theory essen-
tially unchanged, with only slight quantitative changes in
the transient behavior.
After its introduction in Ref. [32], the approach

described by Eqs. (1) and (2) has not been developed
further as it is somewhat unwieldy to tackle analytically; in
particular it has not been used to study oscillatory shear.
Our first contribution will be to determine a dynamical
transition in Eq. (1) under oscillatory shear, separating a
frozen elastically deforming solid state from a yielded state.
Transition line.—We consider applying oscillatory shear

γðtÞ ¼ γ0 sin ðωtÞ in Eq. (1), with a fixed low frequency
ω ≪ 1 so that we are in the quasistatic regime. The two
control parameters are thus the strain amplitude γ0 and the
coupling constant α. For convenience, we introduce the
rescaled versions γ̃0 ¼ γ0=

ffiffiffiffiffiffiffihEip

and α̃ ¼ α=hEi, hEi being
the average over the disorder distribution ρðEÞ. From
Ref. [32], the physically relevant parameter regime of
the disordered HL model is known to be α̃ < 1, where
the system is jammed in the absence of shear. Within this
jammed regime, we now calculate the transition line γ̃�0ðα̃Þ
above which there exists a yielded steady state.
We proceed as follows. At a fixed α̃, suppose γ̃0 is large

enough so that Eq. (1) has a yielded steady state. Rescaling
time by the period T so that τ ¼ t=T ¼ ωt=ð2πÞ, τ ∈ ½0; 1�,
this steady state is characterized by a nonzero period-
averaged yield rate Ȳ ¼ R

1
0 YðτÞdτ. As γ̃0 is decreased

toward γ̃�0, we take Ȳ to vanish smoothly—an assumption
we show to be self-consistent in the end—with the rescaled
yield rate YðτÞ=Ȳ ¼ yðτÞ approaching a limiting form. In
this limit, the key observation from the dynamical equa-
tions [Eqs. (1) and (2)] is that the local yielding events can
be classified into two distinct groups.
Suppose an element yields at a time τ0 ∈ ½0; 1�within the

period, and is assigned a new energy depth E. Neglecting
strain diffusion, its local strain will subsequently evolve as
lðτÞ ¼ γðτÞ − γðτ0Þ. If γ0 þ jγðτ0Þj < ffiffiffiffiffiffi

2E
p

, this element
will therefore not be able to yield again in the next cycle;
its strain will have to change diffusively (due to mechanical
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noise) during a large number of ensuing cycles until it
comes close enough to the threshold

ffiffiffiffiffiffi

2E
p

to be swept
across it by the external shear. In the limit of vanishing
strain diffusion, this will occur precisely at either the strain
maximum or minimum within the cycle (τ ¼ 1=4 or 3=4).
The second group of events is the direct yields. If

γ0 þ jγðτ0Þj ≥ ffiffiffiffiffiffi

2E
p

, the element will yield within the
ensuing cycle. It will do so at a time τy during the cycle
that will depend on the previous yield time τ0 and the
corresponding shear strain γðτ0Þ ¼ γ0 sinð2πτ0Þ, as well as
on E and γ0.
Overall, one can therefore separate the limiting yield rate

into two contributions as yðτÞ ¼ yð1ÞðτÞ þ yð2ÞðτÞ, corre-
sponding to indirect and direct yields respectively.
Conservation of probability then implies the following
pair of self-consistent equations:

yð1ÞðτÞ¼ 1

2
½δðτ−1=4Þþδðτ−3=4Þ�

Z

∞

γ2
0
=2
dEρðEÞ

×
Z

1

0

dτ0yðτ0Þθð
ffiffiffiffiffiffi

2E
p

− γ0− jγ0 sinð2πτ0ÞjÞ

yð2ÞðτÞ¼
Z

∞

0

dEρðEÞ

×
Z

1

0

dτ0yðτ0Þδfτ− τy½τ0;γ0 sinð2πτ0Þ;γ0;E�g ð3Þ

which can be solved numerically in an iterative way [39].
Once the limiting form of the yield rate yðτÞ is known,

the full steady state distribution at the transition P�ðE; lÞ
can be obtained straightforwardly by applying the diffusion
propagator with absorbing boundary conditions at the local
yield thresholds. The critical coupling α̃�ðγ̃0Þ is then found
by imposing normalization of this distribution, and arises
from the interplay between the disordered landscape and
the timescale set by the mechanical noise. A key property
of P�ðE; lÞ is that it is nonzero only for values ðE; lÞ from

which all yields are indirect. The steady state probability of
other elements vanishes as Ȳ=ω at the transition, but they
still contribute to the total yield rate as they have yield
rates ∼ω.
Figure 1 shows the transition line for the specific case of a

Gaussian yield energy distribution ρðEÞ ∼ e−E
2=ð2σ2Þ. This is

the form for ρðEÞwewill adopt in the rest of thework [40], to
match the results of earlier numerical studies [41]. In Fig. 1
we also show the approximate solution obtained if one
neglects direct yields; this is exact for α̃ → 1. This approxi-
mation is useful to derive an exact bound [39] proving in
general that in the presence of disorder the phase boundary
lies above the original HL model: the inclusion of disorder
(which entails deep traps where elements may get stuck)
always tends to extend the size of the frozen region.
Dependence on initial degree of annealing.—Although

we have proven that in the yielded region of Fig. 1 a fluid
steady state exists, whether this ergodic state is reached
depends crucially on the initial condition. We now study the
master equation [Eq. (1)] numerically, while fixing α̃ ¼
0.086 (where γ̃�0 ≈ 1, see star in Fig. 1), and setting the
variance of the Gaussian to σ ¼ 0.05 as in Ref. [25].
Numerical solutions entail choosing a discrete set of energy
levels fEig, and solving a partial differential equation in the
strain variable for each [39]. As a proxy for different degrees
of thermal annealing of the initial glass, we generate initial
conditions of the form PðE; t ¼ 0Þ ∼ ρðEÞeβE, introducing
an inverse temperature β. Physically, increasing β can be
interpreted as decreasing the density of weak zones in the
system, here represented by the shallow energy levels. As
regards the initial local strains, we consider them to be well
relaxed (narrowly distributed)within each energy level, with
standard deviation in strain lcðEÞ=6.
In Fig. 2 we show the stroboscopic (γ ¼ 0) energy in the

steady state after the application of many cycles of shear at

FIG. 1. Phase diagram of the model in the α̃ − γ̃0 plane for a
Gaussian ρðEÞ. Vertical dashed lines indicate the fixed coupling
value α̃ ¼ 0.086, where γ̃0

� ¼ 1 (see star), chosen for studying
the initial annealing dependence.

FIG. 2. Stroboscopic energy in the steady state after application
of many cycles of shear with amplitude γ0. Star indicates
analytically calculated threshold energy U�; dashed line corre-
sponds to the steady shear limit reached as γ0 → ∞, known
from Ref. [32]. Steady state energy values for γ0 ¼ γ�0 and
0.9γ�0 are obtained from a power-law extrapolation of the slow
relaxation [39].
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a given amplitude γ0. On the solid side, this corresponds to
a frozen state with Ȳ ¼ 0; on the yielded side, this is the
ergodic state with Ȳ > 0. The total energy is measured
within the model as U ¼ R

dE
R

dlð−Eþ l2=2ÞPðE; lÞ,
i.e., energy at the bottom of each minimum plus elastic
energy, while the macroscopic stress (see below) is
Σ ¼ R

dE
R

dl lPðE; lÞ. The main features found in MD
simulations [21–23] are reproduced in Fig. 2. Within the
precision and range of our numerics, yielding for poorly
annealed samples appears as a cusp in U at the common
yield point γ�0, while well-annealed samples are insensitive
to shear up to a critical strain γcðβÞ > γ�0. The threshold
energy (and corresponding β�) separating the two types of
yielding simply arises as the lower limit of the ergodic state.
The corresponding data for the macroscopic stress ampli-
tude in the steady state [39] also qualitatively reproduce the
behavior in Refs. [15,21,22], with a finite drop in steady
state macroscopic stress appearing for samples prepared
below the threshold.
We note that the MD studies of Refs. [15,22,42] report a

small (essentially invisible on the scale of Fig. 2) jump in
energy and macroscopic stress amplitude at γ�0. The origin
of this effect, which appears to survive for large system
sizes, is unclear. We expect that in our mean field model
both energy and stress remain continuous on approaching
from the solid side, and our numerics are consistent with
this. From the fluid side, our theory predicts that Ȳ vanishes
continuously, reminiscent of, e.g., the second order tran-
sition scenario of Ref. [43]. Closer inspection reveals that
samples initialized above the threshold energy display
critical behavior at γ�0, where the yield rate decays as
ȲðtÞ ∼ t−b, with an α̃-dependent exponent b ≤ 1. This
implies a diverging number of events for long time,
allowing the system to lose memory of its initial condition.
The critical power-law decay of ȲðtÞ also means that
relaxation timescales must diverge on the approach from
either side of the transition.
Fatigue.—Turning to samples with initial energy below

the threshold energy, which yield at γcðβÞ > γ�0, we find
very interesting transient behavior. As shown in Fig. 3 for
β ¼ 50, close to γcðβÞ the yield rate Ȳ displays strongly
nonmonotonic behavior. Although in our mean field model
the yielded state is reached smoothly, one generally finds
that in finite dimensional systems, once the plastic activity
starts to increase, an instability develops leading to shear
banding or even material failure [44]. As a proxy for the
time to failure (expressed in number of cycles, nf [45]), we
take the inflection point of ȲðtÞ as done in Ref. [31] for
creep (where it is associated to banding [46]), as well as the
point at which Ȳ reaches 75% of its steady state value,
which allows us to analyze larger γ0 where an inflection is
not present. We additionally consider the number of cycles
at which the minimum of Ȳ is reached. We find (Fig. 3) that
the number of cycles nf decreases rapidly (consistent with

an exponential) toward unity as γ0 is increased toward γY ,
the yield point determined for β ¼ 50 under start-up of
steady shear [39]. This is very reminiscent of fatigue failure
[47–51] found, e.g., in metallic glasses. Close to γcðβÞ, the
timescale associated to the minimum shows a clear power-
law divergence, consistent with an inverse square root. The
similarity of this mean field fatigue behavior with creep
flow suggests the intriguing possibility that this divergence
may be understood from a Landau-type scaling argument
as recently proposed in Ref. [52] for creep.
A closer look at the dynamics of the mean field model

near γc reveals that, during the initial cycles, the plastic
activity is dominated by direct yielding of rare shallow
elements [39], which we recall may be thought of as weak
zones in the material. At intermediate times, the energy
distribution PðEÞ then almost settles down to a frozen fixed
point. However, eventually the accumulated strain diffusion
is enough to trigger yield events across the entire energy
spectrum (including deep levels where the bulk of the
population lies), driving the system away toward the
yielded steady state.
Concluding remarks.—In this Letter, we have presented

a mean field mesoscopic elastoplastic approach to study
yielding behavior under oscillatory shear. Our first con-
tribution was to demonstrate the existence of a dynamical
yielding transition and to characterize it analytically.
Secondly, despite its relative simplicity, we have shown
that the model reproduces the key phenomena related to
initial annealing dependence found in MD studies
[11,21,22]. Thirdly, we showed that the dynamics of
well-annealed samples exhibits characteristics of fatigue

FIG. 3. Fatigue behavior for well-annealed sample (β ¼ 50).
Left: nonmonotonic behavior of period-averaged yield rate Ȳ
against number of cycles. Strain amplitudes γ0 range from
1.194γ�0 (blue) to 2γ�0 (red) (see the Supplemental Material
[39] for precise values); also shown is 1.192γ�0 (green), below
the fatigue limit. Right: for the same strain amplitudes, three
measures of the fluidization time as described in the text, 75% of
final yield rate (squares), inflection point (up-triangles), and
cycles to reach the minimum (down-triangles). Inset: divergence
of timescales above γcðβÞ, consistent with an inverse square root
(dashed line) for the minimum.
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failure so that the model also contributes to the under-
standing of this phenomenon.
We comment finally on the contrast to brittle yielding

under uniform shear, and the relative importance of shear
banding. There are important differences between the two
shear protocols, and these are also reflected in the mean
field model. On the one hand, under oscillatory shear, both
the existence of a sharp yield point and the initial annealing
dependence (Fig. 2), which we recall concern steady state
quantities, are largely unaffected by the shear rate _γ0
(equivalent to frequency via _γ0 ¼ γ0ω), and are indepen-
dent of the presence of banding. This was found in MD
studies [21] and is also supported here, where numerical
results with finite frequency (ω ¼ 0.1) largely agree with
the ω → 0 theory. Under uniform shear, on the other hand,
brittle yielding can only strictly be defined for _γ → 0,
where a macroscopic stress drop is caused by the formation
of a system-spanning shear band [8]. Indeed, under uni-
form shear, the disordered HL model shows no sign of
brittle yielding even in the _γ → 0 limit, reflecting the
absence of banding in mean field [53]. Regarding the
transient dynamics under oscillatory shear, we expect
the mean field model to become more accurate away from
the quasistatic limit, as should the approximation of
Gaussian mechanical noise [55].
As avenues of future research, one could improve upon

the diffusive approximation and study the model with
power-law mechanical noise [56,57]. It would also be
interesting to include thermal activation over barriers (as in
soft glassy rheology [28,37]) within the elastoplastic
model, following Refs. [58,59]. Fascinating questions arise,
starting with the phase diagram: would the existence of
activation always lead to a yielded state? How will temper-
ature influence the fatigue behavior?
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