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Double-helix structures, such as DNA, are formed in nature to realize many unique functions. Inspired by
this, researchers are pursuing strategies to design such structures from polymers. A key question is whether
the double helix can be formed from the self-folding of a single polymer chain without specific interactions.
Here, using Langevin dynamics simulation and theoretical analysis, we find that a stable double-helix phase
can be achieved by the self-folding of single semiflexible polymers as a result of the cooperation between
local structure and nonlocal attraction. The critical temperature of double-helix formation approximately
follows Tcri ∼ lnðkθÞ and Tcri ∼ lnðkτÞ, where kθ and kτ are the polymer bending and torsion stiffness,
respectively. Furthermore, the double helix can exhibit major and minor grooves due to symmetric break for
better packing. Our results provide a novel guide to the experimental design of the double helix.
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Double-helix structures are widely observed in nature and
exert many unique biological functions, such as information
storage and replication [1]. Inspired by this, researchers are
working on designing double helices to host versatile
functions, including molecular recognition and asymmetric
catalysis [2–4]. To date, the strategies determined to con-
struct double-helix structures are mainly based on hydrogen
bonding, π-π interactions, or metal coordination [3–7],
which rely on specific interactions of chemical structures
[8,9]. Despite these advances, the design of the double-helix
structures remains challenging, particularly, the nature of the
chain elements of the polymers that exhibit the double-helix
structures is still elusive.
From the physical viewpoint, a key question is what is the

minimal polymer model that can reach a double helix by
self-folding, without resorting to complicated and special
chemical structures and interactions. Many efforts have been
made to explore structures and phase transitions of single
flexible or semiflexible polymer chains [10–25], however,
the double-helix structures have never been observed.
Nonspecific intermonomer attractions usually lead to globu-
lar structures rather than double helix, because globular
structures can maximize the number of attractive pairs. To
suppress the formation of globular structures and promote
the formation of a double helix, bending stiffness kθ and
torsion stiffness kτ can be introduced into the polymer
model. Considering that a double helix has rather uniform
bending and torsion, adding intrinsic bond angle θ0 and
intrinsic torsion angle τ0 can further strengthen the tendency
of a polymer to fold into a double helix. Here, θ0 and τ0
correspond to the situation with zero bending and torsion

energy. In principle, in the case of kθ ¼ þ∞ and kτ ¼ þ∞,
a polymer chain can fold into a single helix with geometrical
features specified by θ0 and τ0. However, kθ ¼ þ∞ and
kτ ¼ þ∞ are usually unrealistic for real polymers. We are
more interested in the regime where kθ and kτ are moderate
and the double-helix structures compete with the globular
structures in terms of free energy. In such a regime, it is
difficult to estimate from theory whether double-helix or
globular structures are thermodynamically more stable. In
this Letter, we will employ a highly efficient sampling
method to investigate the phase diagram of double-helix
or globular structures for a generic polymer model with
moderate kθ and kτ.
Here, a generic coarse-grained bead-spring model, con-

taining bending, torsion, and self-attraction potentials, is
employed. Considering that the formation of a sharp turn in
the double helix will produce a considerable energetic
penalty, the two middle beads along the semiflexible
homopolymer chain are replaced by the two flexible ones,
namely BnL2Bn, in which the Bn is a semiflexible strand
composed of n beads of B and the L2 represents two
flexible beads of L. Then the chain length N is 2nþ 2. The
bonded beads along the chain interact via a harmonic
potential Ebon, described as Ebon ¼

P
i krεðri − σÞ2, where

kr ¼ 100 is a stiff spring constant [23], ε ¼ 1 is the energy
scale, ri is the length of bond connecting successive beads,
and σ ¼ 4 is the length scale. To simulate chain stiffness,
the bending potential Eben for the Bn strands is given by
Eben ¼

P
i kθεðθi − θ0Þ2, where θi is the angle between

two adjacent bonds formed by B beads at any given
configuration, and θ0 corresponds to the equilibrium bond
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angle [19,23]. The torsion potential Etor for the Bn strands
is given by Etor ¼

P
i kτε½1 − cosðτi − τ0Þ�, where τi is

the torsion angle, and τ0 is its equilibrium value [24,25].
The effective nonbonded pairwise attractive interactions
Econ between B beads in dilute solution are described
by the form of Lennard-Jones (LJ) potential Econ ¼P

ε½ðσ=rijÞ12−2ðσ=rijÞ6�, in which rij is the distance
between two beads i and j [20,26]. In order to improve the
computational efficiency, a common cutoff value rc ¼ 2.5σ
is included, at which the LJ potential approximates to
−0.008ε, that is, if rij > rc, the LJ potential is zero. The
nonbonded potential between L and B is purely repulsive,
given by Erep ¼

P
εðσ=rijÞ12. Accordingly, the potential

energy is expressed by Ep ¼ Ebon þ Eben þEtor þEconþ
Erep. In the following study, the values of reference angles θ0
and τ0 are set to 1.832 and 0.873, respectively, correspond-
ing to 105° and 50°, unless otherwise specified. The choice,
derived from the prediction by a theoretical method in the
Supplemental Material [27], allows for the formation of a
double-helix structure. In simulations, Langevin dynamics in
combination with replica-exchange method (REM) sampling
is performed [23,36].
Figures 1(a) and 1(b) present the structural pseudophase

diagrams [37] for the polymers of length N ¼ 30. With
the variations of kθ, kτ, and T, polymer conformations
can transition among distinct structures as illustrated in
Figs. 1(a)–1(c). See the detailed analysis of the transitions in
Secs. S1–S4 [27]. One feature of the phase diagrams is that
the double-helix structures (DH1) can be formed only at
sufficiently large kθ and kτ. The minimum parameter sets of
ðkθ; kτÞ for DH1 formation is presented in Fig. 1(d).
The formation of DH1 usually causes the entropy loss,

which is compensated by lowering the bending and torsion
energy and enhancing interstrand attractions. Accordingly,
DH1 formation often occurs at sufficiently low temper-
ature. We calculate the entropy loss, ΔS, for the G� −DH1

transition and find that jΔSj is smaller with the decrease of
kθ and kτ [Fig. 1(e)]. The minimal jΔSj is ∼12.5 or 0.42 per
bead. To ascertain the free energy barrier to form DH1, a
free energy landscape is shown in Fig. 1(f).
Next, we perform a theoretical analysis of the

G� −DH1 transition using an approach similar to the
thermodynamic integration. Only key steps are presented
here, and more details can be found in Sec. S7 [27].
Polymer conformational free energy is defined as F ¼
−kBTlnΣj expð−Ej=kBTÞ, where Ej is the total energy of
conformation j. The dependence of F on kθ can be
expressed as

∂F=∂kθ ¼ h∂Ep=∂kθi: ð1Þ

Here, hi refers to the ensemble average. For our polymer
model, ∂Ep=∂kθ is determined as

∂Ep=∂kθ ¼ ∂Eben=∂kθ ¼ Σiðθi − θ0Þ2 ≡ Aben: ð2Þ

Here, Aben characterizes the total curvature of a conformation.
Combining Eqs. (1) and (2), we obtain the free energy change
upon kθ variation:

FIG. 1. Phase diagrams for the self-folding of single semiflexible
polymers of length N ¼ 30 with reference angles θ0 ¼ 105° and
τ0 ¼ 50°. (a) Varying the torsion stiffness kτ and the temperature
T at a fixed bending stiffness kθ ¼ 10. (b) Varying kθ and T at
kτ ¼ 5. The dotted lines represent the transition temperatures.
Colored regions stand for structural phases. (c) Representative
structures in different phases: random coils (R), random coils
with flickering helical ordering (R�), globules (G), globules
with local helical ordering (G�), compact structures (C1),
compact structures with local helical ordering (C2), two-helix
bundles (H2), and double-helix structures (DH1). The linker in
the polymer is marked in orange. (d) The minimum parameter
sets of kθ and kτ for the formation of DH1. (e) The dependence
of entropy loss, ΔS, for the G� −DH1 transition on kθ and kτ at
their respective transition temperatures. (f) The free energy
landscape for the G� −DH1 equilibrium at kθ ¼ 7, kτ ¼ 5, and
T ¼ 0.7. (g) The free energy difference ΔF ¼ FDH1

− FG� at
kτ ¼ 5. The transition temperatures corresponding to ΔF ¼ 0
are obtained from simulations and Eq. (9).
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FðkbθÞ − FðkaθÞ ¼
Z

kbθ

kaθ

hAbenidkθ: ð3Þ

Then, we apply Eq. (3) to the G� −DH1 transition. We
define the free energy difference between DH1 and G�
phases as ΔF, which can be derived through

ΔF≡ FDH1
ðkθÞ − FG� ðkθÞ ¼

Z
kθ

krefθ

ΔAbendkθ;

with ΔAben ≡ hADH1

ben i − hAG�
beni. ð4Þ

The integration starts at krefθ , which corresponds to the
G� −DH1 equilibrium, i.e., FDH1

ðkrefθ Þ − FG� ðkrefθ Þ ¼ 0.
Equation (4) has a clear physical meaning that the difference
in the curvatures between DH1 and G� conformations is
responsible for the dependence ofΔF on kθ. Our simulations
suggest that ΔAben ≈ ΔEben=kθ, while ΔEben is nearly a
constant over a wide range of kθ. Taking advantage of this,
we obtain

ΔF ≈ ΔEben lnðkθ=krefθ Þ: ð5Þ

Using similar approaches, we obtain the free energy change
upon varying kτ around the G� −DH1 equilibrium:

ΔF ≈ ΔEtor lnðkτ=krefτ Þ: ð6Þ

Similarly, free energy change caused by varying T around
the G� −DH1 equilibrium follows

ΔF ≈ −ðT − TrefÞΔS; ð7Þ

where ΔS≡ SDH1
− SG� is the difference in entropy

between the two phases. Combining Eqs. (5)–(7) leads to

ΔF≈ΔEben ln

�
kθ
krefθ

�
þΔEtor ln

�
kτ
krefτ

�
−ðT−TrefÞΔS. ð8Þ

Equation (8) can be used to calculate the stability of DH1

with respect to G� as a function of kθ, kτ, and T. Here,
ðkrefθ ; krefτ ; TrefÞ is a parameter set at the G� −DH1 equilib-
rium. Figure 1(g) presents a 2D plot of ΔF for krefθ ¼ 7,
krefτ ¼ 5, and Tref ¼ 0.7. For this parameter set, we obtain
ΔEben ¼ −5.66, ΔEtor ¼ −4.86, and ΔS ¼ −23.98.
Equation (8) can be also used to derive the dependence

of the G� −DH1 transition temperature Tcri on kθ. For
a fixed kτ, the G� −DH1 equilibrium corresponds to
ΔF ¼ 0, i.e., ΔEben lnðkθ=krefθ Þ − ðTcri − TrefÞΔS ≈ 0,
which yields

Tcri ≈ Tref þ ðΔEben=ΔSÞ lnðkθ=krefθ Þ: ð9Þ

As shown by the solid line in Fig. 1(g), the prediction of
Eq. (9) agrees with the phase boundary obtained from

simulations. More comparisons between theory and simu-
lation are included in Sec. S7 [27].
We find that double helix is most favorable when the

local polymer structure, which is largely determined by θ0
and τ0, can maximize the contact area between two strands.
To elaborate this idea, we carried out the following
analysis. For each set of θ0 and τ0, we define an ideal
double helix with θ ¼ θ0 and τ ¼ τ0, i.e., Eben ¼ 0 and
Etor ¼ 0. In the structure, the relative position between two
helices is set to optimize the attractive energy, defined as
Epðθ0; τ0Þ. Herein, if Epðθ0; τ0Þ=N ≤ −0.5, the double
helix is expected to emerge. Otherwise, it could not form
because the gaps in one helix are too small to accommodate
the other. In principle, the value of Epðθ0; τ0Þ=N is
associated with the contact area between the two helices,
and the larger the contact area is, the lower the
Epðθ0; τ0Þ=N becomes. As displayed in Fig. 2(a), the
formation of double-helix structures depends on both θ0
and τ0, and within the ranges θ0 < 93° or τ0 > 85° it is
difficult to adopt a double-helix conformation due to
Epðθ0; τ0Þ=N > −0.5. In the region of 100° < θ0 < 110°
and 50° ≤ τ0 ≤ 60°, the contact area between the two
helices should be larger than that in the other regions
due to Epðθ0; τ0Þ=N < −2.2 [Fig. 2(a)]. We noted that the
ideal DH1 structures are present within the ranges 42° ≤
τ0 ≤ 78° for θ0 ¼ 105° and 97° ≤ θ0 ≤ 159° for τ0 ¼ 50°.

FIG. 2. Influence of local structure on the formation of
double helix. (a) The energy per bead Epðθ0; τ0Þ=N of the
ideal double-helix structures, constructed by the theoretical
method, as functions of θ0 and τ0. Note that the region for
Epðθ0; τ0Þ=N > −0.5, where the gaps in one helix cannot
accommodate the other, is marked in white. (b) Typical
simulated structures for a variety of values of θ0 and τ0 for
the 30mer with kθ ¼ 10 and kτ ¼ 10 at T ¼ 0.1.

PHYSICAL REVIEW LETTERS 128, 197801 (2022)

197801-3



This prediction is supported by the simulations [Fig. 2(b)].
For the polymers of N ¼ 30 with θ0 ¼ 105°, within the
range 40° ≤ τ0 ≤ 90° the representative simulated struc-
tures are double helix at low temperatures. However, for
τ0 ≤ 35° or τ0 ≥ 95° the typical structures are amorphous or
hairpinlike, respectively. Although the simulated double-
helix structures occur at τ0 ¼ 90°, the average torsion
angles of these conformations approximate to 76°, deviated
from the given reference angle, because the local con-
straints in the simulations are not as strong as those in the
theoretical method. As the τ0 is fixed at 50°, the represen-
tative structures are two-helix bundles for 60° ≤ θ0 ≤ 95°,
but double helix for 100° ≤ θ0 ≤ 155°, consistent with the
theoretical prediction. Interestingly, for θ0 ¼ 100° and
τ0 ¼ 50°, it was reported that the homopolymer exhibits
the helix bundles at low temperature [24,25]. However, the
double-helix structures are present in our study. One
possible reason is the effect of the attractive potential
range. In that work, the attractive potential function is given
by vLJ ¼ 4ε½ðσ=rijÞ12 − ðσ=rijÞ6�, differing from that in
our model (Fig. S11a [27]). By adopting the vLJ potential,
the region in terms of θ0 and τ0, expected to form the
double helix, is determined by the theoretical method
(Fig. S11b [27]). Intriguingly, this region falls within that
predicted by our model [Fig. 2(a)], but does not include
θ0 ¼ 100° and τ0 ¼ 50°, namely, at these reference angles
the gaps in one helix cannot accommodate the other. This
result indicates that the interaction range between chain
elements affects the formation of the double helix.
The major and minor grooves often occur in some

double-helix structures of DNA as a consequence of the
asymmetry of complementary base pairs [38]. Are the
major and minor grooves present in the double-helix
structures formed from homopolymers lacking such asym-
metry? For this purpose, the influence of the local structure
of the polymers on the formation of the major and minor
grooves has been examined.
The ideal double helices for various values of θ0 and τ0

within the ranges, where the DH1 conformations are
expected to emerge [Fig. 2(a)], are constructed by the
theoretical method [27]. To identify major and minor
grooves, the azimuthal angle ω, defined as the angle by
which one helical strand rotates to coincide with the other
around the axis of the double helix, is employed. If
ω < 180°, the major and minor grooves are present. As
shown in Fig. 3(a), the regions of reference angles in favor of
forming major and minor grooves are surrounded by those
apt to adopting the symmetric double-helix structures, and
generally, the polymers with larger θ0 and smaller τ0 tend to
adopt the double-helix conformations containing major and
minor grooves. To confirm the prediction, the simulations
are performed for the 30mer with kθ ¼ 10 and kτ ¼ 10 for a
number of pairs of θ0 and τ0 [Fig. 3(b) and video S1 in
Ref. [27] ]. Indeed, the azimuthal angles of the simulated
double helices are in good agreement with the angles

obtained from the theoretical analysis. To understand how
the local structure affects the formation of the major and
minor grooves, the helical pitch (h) and the diameter (d) of a
single helix, depending on the values of θ0 and τ0, have been
calculated (Fig. S12 [27]). When the value of d − σ
approaches to σ or the value of h is close to 2σ, the two
helices are able to get sufficient contact in the direction
perpendicular or parallel to the axis of the double helix,
favoring pairwise attraction, and leading to the formation of
the symmetric double helix. However, when the values of d
and h are large enough, the two helices almost could not get
contact for a symmetric double helix, and in this case,
although entropically favorable, it is energetically unfavor-
able. Therefore, at low temperature, to optimize pairwise
attractions, the two helices need to rotate by a certain angle
around the axis of the double helix to gain adequate contact,
causing symmetric break and the occurrence of the major
and minor grooves.
For finite systems, the system size should have a

significant impact on the structural geometry and stability.
To get insight into the chain-length effect on the formation
of double-helix structures, the diagram of states in terms
of kτ and T for the 50mer with θ0 ¼ 105°, τ0 ¼ 50°, and
kθ ¼ 10 is plotted (Fig. 4). Compared to the diagram of
states for N ¼ 30, the phase diagram for N ¼ 50 exhibits
apparently more structures in the folded regime. For low
temperatures, within the range 0 ≤ kτ ≤ 1.0 the self-
attractions overcome bending and torsion constraints,

FIG. 3. Local structure effect on the formation of major and
minor grooves in the double-helix structures. (a) The dependence
of the theoretical azimuthal angle ω between two helical strands
on θ0 and τ0. (b) The representative simulated structures of the
30mer with kθ ¼ 10 and kτ ¼ 10 for a number of values of θ0 and
τ0 at T ¼ 0.1, and the corresponding simulated values of ω
shown at the bottom.
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and the compact amorphous structures (C1) predominate.
With the increase of kτ, the three-double-helix bundles
(DH3) occur for 1.0 < kτ < 2.4, and the two-double-helix
bundles (DH2) emerge for 2.6 < kτ < 5.0. Upon further
increasing kτ, a stable double-helix phase (DH1) is present
for kτ > 5.5. Obviously, the torsion strength required to
stabilize the DH1 structure for the 50mer is larger than that
for the 30mer [Figs. 1(a) and 4(a)], which should be
attributed to the fact that as the chain length increases, the
possible pairwise attractions increase, leading to the enhance-
ment of the torsion strength to preserve the double-helix
structure. With further increasing the chain length, additional
structures are observed. See more discussion about the chain-
length dependence in Secs. S8 and S10 [27].
The above simulations do not consider Coulomb inter-

actions within the polymer chains. We have performed
additional simulations with Coulomb interactions and also
observed double helix (Sec. S11) [27].
In conclusion, we obtain the parameter spaces

ðkθ; kτ; θ0; τ0; T; NÞ for the double-helix formation in the
self-folding of a generic polymer model. More importantly,

we reveal the physical roles of each parameter in double-
helix formation. First, the entropy loss in the double-helix
formation must be compensated by lowering the bending
and torsion energies, which requires kθ and kτ to be
sufficiently large [Fig. 1(d)]. Second, the shape of local
structures determined by θ0 and τ0 should facilitate the
interhelix contacts to enhance pairwise attractions (Fig. 2).
Third, the major and minor grooves can be controlled by θ0
and τ0. Fourth, increasing N promotes the formation of the
double-helix bundles, which can be suppressed by higher kθ
and kτ. The proper combination of θ0, τ0, kθ, and kτ should
play important roles in the double-helix formation in experi-
ments of synthetic semiflexible polymers [7,39,40]. In
addition, a series of very interesting experiments observed
that polyalanines exhibit several distinct conformations
including globule, single helix, and helical dimer (bundle),
depending on the chain length and the addition of lysine
on the C- or N- terminus [41,42]. Double helix is absent
in polyalanines probably because θ0, τ0, kθ, and kτ are not in
the region. Interestingly, the equilibrium angles of the helix
formed by the polyalanines are θ0 ≈ 91° and τ0 ≈ 50°, which
are not within the DH1 region (Fig. S27b [27]), but rather
within α-helix region (Fig. S27c [27]). Accordingly, our
results are useful in choosing θ0, τ0, kθ, and kτ for rational
design of the double helix in real polymers.
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