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We investigate emergent quantum dynamics of the tilted Ising chain in the regime of a weak transverse
field. Within the leading order perturbation theory, the Hilbert space is fragmented into exponentially many
decoupled sectors. We find that the sector made of isolated magnons is integrable with dynamics being
governed by a constrained version of the XXZ spin Hamiltonian. As a consequence, when initiated in this
sector, the Ising chain exhibits ballistic transport on unexpectedly long timescales. We quantitatively describe
its rich phenomenology employing exact integrable techniques such as generalized hydrodynamics. Finally,
we initiate studies of integrability-breaking magnon clusters whose leading-order transport is activated by
scattering with surrounding isolated magnons.
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Introduction.—The celebrated Ising model contributed to
several paradigm shifts in physics. In classical statistical
mechanics, Onsager’s solution [1] on a two-dimensional
lattice kick-started the development of a general theory of
continuous phase transitions. It is well known that in the
presence of a transverse field only, the one-dimensional
quantum Ising chain is exactly solvable [2–4] and reduces
via the Jordan-Wigner transformation to a free Majorana
chain [5]. On the other hand, the addition of a longitudinal
field breaks the integrability of the model. In the ferromag-
netic case, this leads to confinement of fermionic domain
walls into bosonic magnons [6–9]. Recent studies concen-
trated on aspects of anomalously slow dynamics [10–15],
quantum scarring [16,17], prethermalization [18], fractons
[19], meson scattering [20,21], dynamics of the false vacuum
[22–27], and emergent Z2 lattice gauge theories [28,29].
In this Letter, we unveil unexpected features of the one-

dimensional quantum Ising model in a weakly tilted field.
Specifically, we investigate transport in the prototypical
partitioning protocol [30]: the chain is initialized into two
halves which are then connected, activating transport
across the junction. We observe strong signatures of
ballistic behavior for unexpectedly long times in the
regime where the transverse field is small. Moreover,
we discover that the nature of transport exhibits a strong
dependence on the longitudinal field and on the Ising
coupling. Using degenerate perturbation theory as a tool,
we argue that the effective Hamiltonian in this regime
enjoys two separate U(1) conservation laws for the
number of magnons and domain walls. These two sym-
metries are emergent as they are not imprinted in the
microscopic Hamiltonian. We show that, at leading order
in perturbation theory, the effective dynamics fragments

the Hilbert space (expressed in the canonical local basis)
into a large number of independent sectors that scales
exponentially in the system size. Among all sectors we
first focus on the dynamics of isolated magnons, which we
find to be integrable. This finding accounts for the
emergence of ballistic behavior—a clear signature of
integrability—in contrast to the naively expected diffu-
sion. Specifically, this sector is governed by the con-
strained XXZ Hamiltonian first investigated by Alcaraz
and Bariev [31] with coordinate Bethe Ansatz. Apart from
early studies [32,33] this model went unnoticed for a long
time, but recently appeared in several independent con-
texts, e.g., in the constrained PXXP model [34], in the
strongly coupled regime of a Z2 lattice gauge theory
coupled to fermions [35], and in interacting correlated
hopping models [36]. At the noninteracting point, that is
nontrivial due to the constraint, it emerges in the strong
coupling limit of the canonical XXZ spin chain [37–39].
The leitmotif of some of these studies is the phenomenon
of Hilbert space fragmentation [40–44] due to imposed or
emergent constraints which make the constrained XXZ
chain a natural candidate to describe integrable sectors, if
present. Moreover, see also Refs. [45–47] for related
integrable constrained models with medium range inter-
actions. Using generalized hydrodynamics (GHD) [48,49]
(see also Refs. [50–56]) we analytically tackle transport
within the isolated magnon sector. The Alcaraz-Bariev
(AB) model inherits the rich phenomenology of the XXZ
spin chain: transport greatly depends on the interactions
and can exhibit sharp jumps [57]. We find that the
hydrodynamics of the AB model is peculiar on its own,
since in certain regimes of interactions quasiparticles
carry fractional magnetization, in clear contrast with the
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vast majority of integrable models and signaling the
collective nature of the excitations. The presence of
two or more neighboring magnons breaks integrability
and probes the transport of surrounding isolated magnons.
Indeed, within the leading order perturbation theory
clusters of magnons are completely immobile in isolation,
but we show they undergo magnon-assisted hopping
experiencing biased diffusion, whose mean and variance
are directly connected to the magnetization current cross-
ing them.
Emergent ballistic transport in the Ising chain in a weak

transverse field.—With the help of time evolving block
decimation (TEBD) [58], we start by numerically inves-
tigating transport in the Ising chain in a tilted magnetic field

H ¼ −J
X

i

ZiZiþ1 − hk
X

i

Zi − h⊥
X

i

Xi; ð1Þ

where Xi and Zi denote the Pauli matrices at site i. In the
partitioning protocol [30], one initializes the state in two
different halves jΨi ¼ jΨLi ⊗ jΨRi and then lets the system
evolve with the homogeneous Hamiltonian. In Fig. 1(a) we
choose jΨLi and jΨRi to be the Neel and ferromagnetic state
respectively, and we focus on the regime where the trans-
verse field is weak. While the Hamiltonian [Eq. (1)] is
known to be nonintegrable for generic values of the
parameters, our analysis unveils persistent ballistic transport
typical of integrable models [48,49], in contrast with the
naively expected diffusion. With this choice of initial states,
we also observe a strong dependence of transport on the
longitudinal field and the Ising coupling with a light cone
suppression whenever 0 < hk=J < 4; see Fig. 1(b). This

unexpected behavior can be ascribed to a peculiar integrable
model, as we now discuss.
Effective Hamiltonian.—We analyze the Ising chain

[Eq. (1)] in the regime where the transverse field h⊥ is
much smaller than the two generic (but incommensurate)
couplings J and hk. To set up a perturbative expansion we
split the Hamiltonian [Eq. (1)] into the classical Z-dependent
part H0 (the Ising and longitudinal field terms) and
the transverse field perturbation. Since ½H0; Zi� ¼ 0, the
HamiltonianH0 has an extensive number of symmetries and
trivially splits in the Z basis into 2L independent blocks.
Notwithstanding, its energy spectrum is organized into
degenerate multiplets characterized only by a pair of
emergent U(1) quantum charges: the magnon number N
and the domain wall number D ¼ P

ið1 − ZiZiþ1Þ=2. By
construction, N and D are both simultaneously preserved by
the effective perturbative dynamics. The transverse field
perturbation changes the number of magnons and thus can
contribute only at even orders of the degenerate perturbation
theory. Employing the Schrieffer-Wolff transformation
[59,60], in the Supplemental Material [61] we have con-
structed the second-order effective perturbative Hamiltonian

Hð2Þ
eff ¼−

X

s¼�1

ts
X

j

Ps
j−1;jþ2ðSþj S−jþ1þH:c:Þ

−g
X

j

Zj−1ZjZjþ1−δJ
X

j

ZjZjþ1−δhk
X

j

Zj; ð2Þ

where the spin-exchange coupling ts ¼ h2⊥h−1k J=ðhk þ 2sJÞ,
the projector Ps

i;j ¼ ½1þ sðZi þ ZjÞ þ ZiZj�=4, and S�j ¼
ðXj � iYjÞ=2.Moreover, the induced three-spin coupling g ¼
h2⊥h−1k J2=α and the shifts of the Ising and longitudinal

couplings are δJ ¼ −h2⊥J=α and δhk ¼ h2⊥h−1k ðh2k − 2J2Þ=
ð2αÞ,wherewe introducedα ¼ h2k − 4J2. Correctionsbeyond

Eq. (2) are Oðh4⊥Þ and are discussed in the Supplemental
Material [61]. The Hamiltonian agrees with the previous
derivation [62]; see also Refs. [21,36] for related studies.
Domainwall conservation enforces the projectorPs

i;j ensuring
that the two outer spins surrounding the exchange pair point in
the samedirection.Asimilar typeof hoppinghas been recently
discussed in Refs. [36–39]. Since only isolated magnons can
hop, the perturbative model [Eq. (2)] supports a large number
of immobile (frozen) quantum states that contain clusters of
magnons.
The number Fl of independent frozen states of size l ≫ 1

scales exponentially Fl ∼ φl, where φ is the golden ratio
[36]. In the Supplemental Material [61] we demonstrate that
for chains of size L ≫ 1 the effective Hamiltonian [Eq. (2)]
splits into φLþ1 independent blocks. Such exponential
growth is parametrically larger than the OðL2Þ scaling
expected purely from the two U(1) emergent symmetries.
A similar pattern of fragmentation of the Hilbert space was
discovered in spin models in the strict confinement regime

FIG. 1. Magnetization profiles hSzji in the Ising chain at J ¼ 1
and h⊥ ¼ 0.2 initialized by joining the ferromagnetic and Neel
states. (a) For hk ¼ −0.7 we observe ballistic transport with a
characteristic light cone. (b) For hk ¼ 0.7 we find strong
suppression of spin transport. TEBD simulations are done for
a chain of length L ¼ 80. The peculiar transport is captured by
the integrable dynamics governed by the Hamiltonian [Eq. (3)]
which emerges for a weak transverse field h⊥ ≪ hk; J. The
validity of the phase diagram is within this limit; see main text for
discussion.
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[36]. Consider first a sector with N isolated spin-down sites
in the spin-up background. In this caseD ¼ 2N and pairs of
magnons cannot appear next to each other. In this sector the
second-order Hamiltonian [Eq. (2)] reduces to

Hð2Þ
eff → −J

X

j

P1ðSxjSxjþ1 þ SyjS
y
jþ1 þ ΔSzjS

z
jþ2ÞP1; ð3Þ

where the projector P1 prohibits two spin-down magnons
from occupying neighboring sites. The inverse of the
coupling J ¼ 2tþ defines the slow timescale associated
with hopping of the isolated magnons. The anisotropy
parameter Δ ¼ 2J=ðhk − 2JÞ can be tuned by changing
the dimensionless ratio hk=J. This model is a constrained
version of the celebrated XXZ chain which was first
investigated by Alcaraz and Bariev [31]. Remarkably, the
Hamiltonian [Eq. (3)] at Δ ¼ 1=2 is known to be a super-
symmetric model [63,64], which can be realized in a
Rydberg-based quantum simulator [65].
Transport in the Alcaraz-Bariev model.—The AB model

can be generalized to the extended hard-core constraint
P1 → PT prohibiting magnons closer than T sites. The
original papers [31–33] addressed the equilibrium thermo-
dynamics. For Δ ¼ 0 and T ¼ 1, the AB model governs
the isolated magnon sector of the folded XXZ spin chain
[37–39]. Here we focus on transport and hydrodynamics
of the AB model at arbitrary Δ.
Being integrable, the AB model possesses an extensive

number of (quasi-)local conserved quantities [66], with
striking consequences on its nonequilibrium features, hin-
dering thermalization [67] and featuring ballistic transport
[51]. The AB Hilbert space is made of multiparticle
magnonic asymptotic states labeled by the set of rapidities
fλjgNj¼1, which generalize the momenta of noninteracting
systems. Because of integrability, multiparticle scattering
events can be factorized in two-body scattering processes,
the latter fully described by the scattering phase Θðλ; λ0Þ.
The scattering phase of the AB model and of the XXZ spin
chain are connected [31,61] Θðλ; λ0Þ ¼ TpðλÞ − Tpðλ0Þ
þΘXXZðλ − λ0Þ, with pðλÞ the momentum of the magnon.
The relation resembles the celebrated TT̄ deformation; see
Refs. [68–74] and references therein. On a finite chain, the
allowed rapidities are quantized, similarly to the momenta of
noninteracting models. However, the interactions couple the
rapidities through the highly nonlinear Bethe equations
[61,75], which explicitly depend on Θ. Being nonlinear,
the Bethe equations are difficult to solve. In the zero density
limit (L → ∞, N fixed), the solutions of the Bethe equations
form groups of rapidities sharing the same real part, but
shifted in the imaginary direction. These special solutions
are called strings and are determined by the zeroes and poles
of the scattering matrix eiΘðλ;λ0Þ [75] and are readily
interpreted as bound states of magnons. Since the factor
eiT½pðλÞ−pðλ0Þ� does not have zeros or poles, in the AB
scattering matrix these are entirely determined by the

XXZ scattering matrix. Hence the two models share the
same pattern of strings.
The string hypothesis [75] claims the persistence of

strings even in the thermodynamic limit (L → ∞, N=L ¼
n fixed). Within the thermodynamic Bethe ansatz (TBA)
[75], one opts for a coarse-grained description of the Bethe
equations, defining the so-called root densities ρjðλÞ, one for
each string, where λ parametrizes the (real) center of the
string. Then, LdλρjðλÞ is interpreted as the number of
solutions of the jth string within the interval ½λ; λþ dλ�.
The interactions affect the occupancy; hence, the need of
introducing the total root density ρtjðλÞ ≥ ρjðλÞ representing
full occupancy (see the Supplemental Material for details
[61]). The root densities fully determine the equilibrium
thermodynamics and homogeneous nonequilibrium steady
states [66,76,77]. Moreover, they are the building blocks of
GHD. Since the AB and XXZ models are closely related, it
is worth properly addressing the string hypothesis in the
latter. The string classification in the XXZ chain is textbook
material [75], and we summarize it in the Supplemental
Material [61]. The structure of XXZ strings greatly depends
on the parameter Δ: in particular, for jΔj ≥ 1 the string
hypothesis, strictly speaking, does not cover the entire phase
space. The thermodynamics of the strings built on the all-
spin-up reference state covers only states up to half filling
0 < n < 1=2, with n being the density of flipped spins. In
the XXZ model, one circumvents this limitation by using the
reflection symmetry Szj → −Szj and building the string
hypothesis on the symmetric all-spin-down reference state.
The two descriptions together cover the whole phase space
and, in addition to the root densities, one introduces the
magnetization sign f ¼ �1 to specify the sector. In the case
jΔj < 1, the string hypothesis covers all magnetization
sectors, and f is not needed.
In the AB model, the constraint shifts the half filling

point to the value 1=ð2þ TÞ. Moreover, it breaks the spin
reflection symmetry. In Ref. [31] the Bethe equations of
the AB model in all sectors have been mapped onto the
corresponding equations for the XXZ chain in a reduced
magnetization-dependent volume. Building on these
ideas, we now determine the thermodynamics of the
AB model at a generic filling, which is described by
the same set of root densities as the XXZ spin chain.
Above half filling, these cannot be interpreted as strings
anymore; however, for the sake of retaining a standard
notation, we will still refer to these root densities as
strings. In addition, for jΔj > 1 one needs an extra bit of
information f ¼ �1 that distinguishes the regions below
and above half filling, respectively. When addressing
thermodynamics and transport, it is crucial to know the
amount of magnetization carried by each string. Within
the ordinary string hypothesis, this is simply the number
of magnons belonging to the same bound state.
In the XXZ case, one has mXXZ

j ¼ fjmXXZ
j j, with jmXXZ

j j a
f-independent integer. On the other hand, in the AB model
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we find an explicitly f-dependent magnetization mj¼
½1þTð1−fÞ=2�−1mXXZ

j . We observe that for f ¼ −1
(needed if jΔj > 1) the string magnetization mj becomes
fractional! This signals the lack of microscopic interpre-
tation of the root density as a bound state of magnons. We
found that the nontrivial f dependence extends from the
magnetization to thermodynamic observables. To see that
we consider the TBA string scattering phase Θj;j0 ðλ; λ0Þ
that, whenever the string hypothesis holds, is obtained
from Θðλ; λ0Þ summing over the constituents of the string.
In all sectors it can be written as

Θj;j0 ðλ; λ0Þ ¼ TpjðλÞmj0 − Tmjpj0 ðλ0Þ þΘXXZ
j;j0 ðλ− λ0Þ: ð4Þ

The appearance of the magnetization mj makes
Θj;j0 explicitly f-dependent. In addition, we find that f
renormalizes the total root density 2πσjρ

t
j¼ð∂λpjÞdr½1þ

Tð1−fÞ=2�−1, where σj is the string parity and the standard
definition of dressing is ð∂λpjÞdr ¼ ∂λpj −

P
j0
R ½ðdλÞ=

ð2πÞ�∂λΘj;j0 ðλ; λ0Þϑj0 ðλ0Þσj0 ð∂λ0pj0 Þdr, with ϑj¼ρj=ρtj being
the filling fraction. With these caveats, one can recover the
full equilibrium thermodynamics by standard methods:
we leave the details to the Supplemental Material [61] and
move on toward discussing hydrodynamics. Let us imagine
that the system, still governed by the homogeneous AB
Hamiltonian, features a long wavelength inhomogeneity in
the state. In the limit of weak inhomogeneities, one can
invoke local relaxation to (weakly) space-time dependent
root densities. This is the idea behind GHD [48,49], which
in its simplest form describes the convective expansion
of particles ∂tρjðλÞ þ ∂x½veffj ðλÞρjðλÞ� ¼ 0. The effective
velocity

veffj ðλÞ ¼ ½∂λϵjðλÞ�dr=½2πσjρtjðλÞ�; ð5Þ

depends on the state due to interactions, making the equation
nonlinear. Above, ϵj is the energy carried by the string. In
contrast to the AB model, in most integrable systems the
identity 2πσjρ

t
j ¼ ð∂λpjÞdr holds, leading to the alternative

more intuitive definition veffj ðλÞ ¼ ð∂λϵjÞdr=ð∂λpjÞdr that
was originally reported in Refs. [48,49]. However, in a
recent rigorous proof [55,78,79], Eq. (5) naturally
emerges from the calculations. At a technical level,
Eq. (5) arises in the AB model naturally by manipulating
the hydrodynamic equations [61]. To the extent of our
knowledge, this is the only model with this feature.
In the case with jΔj > 1, the spin flip continuity
∂tnþ ∂xjn ¼ 0, with n ¼ ð1 − fÞ=½2 þ Tð1 − fÞ�−1 þP

j

R
dλmjρjðλÞ and jn ¼

P
j

R
dλveffj ðλÞmjρjðλÞ, closes

the hydrodynamic equations giving a further condition on
f, similar to the XXZ model [57].
The partitioning protocol and GHD.—We now apply

GHD of the AB model to the partitioning protocol. After a

short transient the profile of local observables becomes
scale invariant [48,49] hOðt; xÞi ¼ F½x=t� and curves at a
different time collapse when plotted as a function of the ray
ζ ¼ x=t. As we show in Fig. 2(a), if one starts from an
initial state with only isolated magnons the Ising chain
agrees with the underlying AB description (up to a time-
scale t ∼ h−4⊥ ) and supports ballistic transport. Note that for
jΔj ≥ 1, i.e., 0 ≤ hk=J ≤ 4, the magnetization sign f is
responsible for sharp jumps whenever states from the two
different magnetization sectors are joined. At t ¼ 0, the
fðxÞ profile is a step function and due to discreteness of
f, GHD cannot smoothen its profile, but only moves the
position of the jump. The explicit f-dependence of the TBA
induces nonanalyticities not only in the magnetization
profile (as in the XXZ chain [57]), but in all conserved
charges.
An extreme example is presented in Fig. 1: for jΔj ≥ 1,

the Neel state and the ferromagnetic states have the exactly
same trivial root density ρjðλÞ ¼ 0, but differ in the sign of f
[61]. Hence, any smooth dependence of the profile is
suppressed and only the jump, that is pinned at the origin,
remains. In this case, transport is inhibited. Whenever the
initial root density of the two halves is known, GHD
provides an exact solution of the partitioning protocol;
see Fig. 2 and the Supplemental Material [61] for further
evidence.
Beyond isolated magnons.—Sectors which contain frozen

clusters of magnons appear to be generically not integrable:
their energy level statistics [80,81] falls into the class of the

FIG. 2. (a) The magnetization profile of a chain of length
L ¼ 80 evolved with TEBD from jNeeli ⊗ jferroi at large time
(measured in the AB units ½J −1�) tAB ¼ 20 approaches the GHD
prediction. For the Ising model we choose parameters h⊥ ¼ 0.5,
hk ¼ 6, and J ¼ 1, corresponding toΔ ¼ 0.5 in the AB model. In
the inset, we show the collapse of the AB simulations on the
GHD analytical prediction. (b) To highlight magnetization jumps
in jΔj > 1 (precisely, Δ ¼ 1.5;J ¼ −1), we consider the parti-
tioning from jGShZii ⊗ jferroi with jGShZii the ground state of
the AB model in the sector at fixed magnetization hZi for a chain
of length L ¼ 120. For the left-side magnetization being below
(top) and above (bottom) the half filling dotted line, the profile
exhibits qualitatively different behavior.
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Gaussian orthogonal random matrix ensemble; see
Fig. 3(a) and the Supplemental Material [61] for a detailed
analysis. As mentioned before, within leading order
perturbation theory clusters are frozen when isolated
[82] and do not contribute to transport by themselves,
but their mobility is activated by the scattering with a
magnon. If the scattering is reflective, the cluster stands
still, but if transmission occurs the cluster hops by two
sites in the direction opposite to the traveling magnon.
Therefore, one can relate the cluster displacement x with
the total magnetization transported through it as x ¼ 2δSz.
Given that, the cluster position reflects the local transport
of spin and its fluctuations. At late times, a cluster of two
magnons undergoes a biased random walk, hopping in the
left and right directions with certain rates RL;R which
depend on the interactions with the magnonic gas and
being proportional to its density. Hence, at a late time the
cluster experiences diffusion [61] with a linear growth of
the average position and variance; see Fig. 3.
Conclusions and outlook.—We discussed the rich phe-

nomenology and transport in the weakly tilted Ising spin
chain, exhibiting fragmentation, emergent integrability, and
magnon-assisted cluster dynamics. Rydberg atoms in
optical tweezers could be used to probe the slow exotic
physics of magnons and clusters discussed here. This
experimental platform provides a versatile tool for studying
many-body quantum dynamics of Ising-type models in a

tilted field [85–87]. The ability to tune the model param-
eters and the unprecedented control of the initial state [88]
opens a pathway toward experimental investigation of the
constrained integrable dynamics emerging in the Ising
model in a weak transverse field. In particular, the latter
can be seen as a quantum simulator of the Alcaraz Bariev
model with completely tunable interaction. Finally, inter-
esting questions concerning the role of a finite density of
integrability-breaking clusters on the late time thermal-
ization and transport remain open for future investigations.
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