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Dipolar condensates have recently been coaxed to form the long-sought supersolid phase. While one-
dimensional supersolids may be prepared by triggering a roton instability, we find that such a procedure
in two dimensions (2D) leads to a loss of both global phase coherence and crystalline order. Unlike in 1D,
the 2D roton modes have little in common with the supersolid configuration. We develop a finite-
temperature stochastic Gross-Pitaevskii theory that includes beyond-mean-field effects to explore the
formation process in 2D and find that evaporative cooling directly into the supersolid phase—hence
bypassing the first-order roton instability—can produce a robust supersolid in a circular trap.
Importantly, the resulting supersolid is stable at the final nonzero temperature. We then experimentally
produce a 2D supersolid in a near-circular trap through such an evaporative procedure. Our work
provides insight into the process of supersolid formation in 2D and defines a realistic path to the
formation of large two-dimensional supersolid arrays.
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The supersolid phase was predicted to simultaneously
exhibit crystalline order and superfluidity [1-6]. While it
remains elusive in helium, recent developments in ultracold
quantum gases have finally made supersolidity a reality,
providing an excellent platform for the control and obser-
vation of these states. Important early advances were made
in systems with spin-orbit coupling [7,8] and cavity-
mediated interactions [9], where supersolid properties were
observed in rigid crystal configurations. Bose-Einstein
condensates (BECs) with dipole-dipole interactions have
now been observed in a supersolid state with deformable
crystals [10-13], with their lattices genuinely arising from
the atom-atom interactions [14—16].

In the first dipolar supersolid experiments, translational
symmetry was broken only along one axis, giving rise to a
one-dimensional (1D) density wave, commonly referred to
as a 1D droplet array [10-12]. A more recent experiment
has created the first states with two-dimensional (2D)
supersolidity in elongated traps of variable aspect ratio
[13]. This opens the door to study vortices and persistent
currents [17-20], as well as exotic ground state phases
predicted for large atom numbers [21-24].

It is still an open question whether 2D arrays provide as
favorable conditions for supersolidity as 1D arrays do. In
1D, following an interaction quench from an unmodulated
to modulated BEC, the density pattern induced by a roton
instability [14,25-28] can smoothly connect with the final
supersolid array [10-12]. This transition, hence, has a
weakly first-order character or is even continuous [29,30],
and such quenches through the transition cause only small
excitations of the resulting supersolid [10-12]. While it has
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been predicted that a similar procedure may lead to
coherence between three droplets in a triangular configu-
ration [31], earlier work with nondipolar superfluids
suggests that such symmetry-breaking quenches may be
unfavorable for supersolid formation in 2D and 3D [32,33].

An alternative method exists to experimentally produce
dipolar supersolids. Instead of quenching the interactions
to trigger a roton instability, it is possible to cool a
thermal sample directly into the supersolid state using
evaporative cooling techniques [12,34]. Crucially, this is
the only known method for producing 2D supersolids to
date [13]. While a dynamic interaction quench may be
described by the extended Gross-Pitaevskii equation
(eGPE) [35-38], we are not aware of any available theory
to model the required evaporation process. From a theo-
retical perspective, much remains unknown about evapo-
rative supersolid formation. Is it a general feature that the
droplets form before global phase coherence develops, as
reported in Ref. [34]? Under what conditions do defects
persist? Such answers will be paramount in the quest for
ever-larger 2D supersolids, as well as for the observation of
vortices embedded within them.

In this Letter, we explore the formation of large 2D
supersolids in circular-shaped traps. We develop a finite-
temperature Stochastic eGPE (SeGPE) theory to model the
entire evaporative cooling process. Importantly, our theory
includes the beyond-mean-field quantum fluctuations
responsible for stabilizing the individual droplets.

We compare the evaporative cooling formation dynamics
with those resulting from an interaction quench, finding
striking differences between the two protocols. Following
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(a) Crystal preparation from interaction quench, evolved with the eGPE, for N ~ 2.1 x 10° Dy atoms [quench (i)]. Isosurfaces

are at 5% max density, with color indicating phase. Insets: z column densities normalized to max value from the entire simulation.
(b) Dynamic structure factor for an unmodulated BEC (a, = 92a,) in energy-momentum space, normalized to peak value. The lowest-
energy roton modes are indicated, and the ground state with an m = 2 roton mode added is shown, revealing the localized nature of the
rotons. Parameters are otherwise the same as in (a). (c) Crystal preparation from temperature quench (evaporative cooling) evolved with
the SeGPE [quench (ii)]. The temperature decreases as the chemical potential and condensate number rise, with scattering length fixed at

a,; = 88ay. For all subplots f,, . = (33,33,167) Hz, and I, = \/A/mw,.

an interaction quench, the 2D crystal grows nonlinearly
with the droplets developing sequentially, producing con-
figurations that are unrelated to any roton mode combina-
tion of the original unmodulated BEC. The resulting crystal
is substantially excited and lacks global phase coherence.
Alternatively, by directly cooling into the supersolid
regime, our SeGPE theory predicts the formation of large
2D supersolids in circular traps, with global phase coher-
ence that remains robust at finite temperature. To bench-
mark our theory—as well as to test the direct cooling
protocol for pancake-shaped trapping geometries—we
perform experiments and observe a 7-droplet hexagonal
supersolid in a near-circular trap.

Formalism.—We are interested in ultracold, dipolar
Bose gases harmonically confined in 3D with trapping
frequencies w,,.=2xf,,.. Two-body contact inter-
actions and the long-ranged, anisotropic dipole-dipole
interactions are well described by a pseudopotential,
U(r) = (4zxh*a;/m)d(r) + (3h’agq/m)[(1 — 3cos?0) /),
with a; being the s-wave scattering length and ayq =
uop2,m/12zh?* the dipole length, with magnetic moment
M., and 0 is the angle between the polarization axis (z axis)
and the vector joining two particles. The ratio eqq = aqq/a
(for a; > 0) is convenient to keep in mind, since for egq < 1
the ground state will be an unmodulated BEC, whereas
for the dipole-dominated regime €44 > 1 the unmodulated
BEC may become unstable [39]. Here, we always consider
164Dy, with agq = 131a,. The eGPE has been described
elsewhere [35-38], and its details have been deferred to
Supplemental Material [40].

We phenomenologically introduce a finite-temperature
simple growth SeGPE theory [55]. This describes the
“classical” field, W¥(r,#), of all highly populated
modes up to an energy cutoff. The dynamics are governed
by [56]

=P i) (L) ¥ ()

Here, £ is the eGPE operator defined in Ref. [40],
and y describes the coupling of the classical field modes
to the high-lying modes. We find that y = 7.5 x 1073
gives good agreement to the condensate number growth
rate of a recent experiment under comparable conditions
[34] (see also Ref. [40]). The dynamical noise term 7,
subject to noise correlations given by (i7*(r, 1)n(r', 7)) =
2hykgTS(t — ')8(r — '), means that each simulation run
is unique. Finally, P is a projector which constrains the
dynamics of the system up to energy cutoff e, (u) = 2u—
consistent with previous treatments [57,58]—where we use
the final y after evaporative cooling.

Supersolid formation simulations.—With these two the-
ories in hand, we perform two kinds of dynamic quench
simulations in a pancake-shaped trap, where in both
cases the ground state for the final parameters would be
a 19-droplet supersolid:

(1) An interaction quench from an unmodulated BEC to
the supersolid regime using the eGPE [Fig. 1(a)]. Noise is
first added to the BEC ground state [59], and this is evolved
for a 20 ms equilibration time before the interaction
strength is linearly ramped over the next 30 ms from
a; = 95ag to a, = 88ay—-crossing the roton phase tran-
sition to the supersolid regime—and then held constant
again for the remainder of the simulation.

(i) A temperature quench from a thermal cloud to the
supersolid phase using the SeGPE [Fig. 1(c)]. Each simu-
lation begins with a 200 ms equilibration time at fixed
high temperature 7 = 150 nK to generate a thermal cloud.
To simulate the evaporative cooling process, the chemical
potential and temperature are then linearly ramped
over 100 ms, from (u,T) = (-12.64hw,, 150 nK) to
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(12.64hw,,30 nK), mimicking the growing condensate
number observed in experiments [60,61], while the scatter-
ing length is always held fixed at a;, = 88a,.

Focusing first on the interaction quench, the density
isosurfaces in Fig. 1(a) represent snapshots at various times
for a single simulation run, revealing intriguing formation
dynamics. Initial droplets are seeded through unstable roton
modes, but staggered droplet formation reveals a process
of nonlinear crystal growth, as highlighted by the column
densities shown as insets in Fig. 1(a). In Fig. 1(a2), two
central droplets have already attained their final peak
density, while a secondary ring of droplets is only just
beginning to form. Then, in Fig. 1(a3), eight droplets
have fully matured, and the process continues radially
outward until a 19-droplet crystal is approximately
attained. Similar droplet formation dynamics have been
predicted in optical media [62].

The colors on the density isosurfaces in Fig. 1(a)
represent the wave function phase. The color scale is
recentered in each subplot, and an ideal phase coherent
solution would have a uniform color everywhere.
Importantly, the crystal growth process disrupts the global
phase coherence, as evidenced by the various colors in
Fig. 1(a4), leaving an excited crystal in which some outer
droplets dissolve and reemerge from the halo. Note that the
situation does not qualitatively change for reduced initial
noise or gentler interaction ramps, suggesting that the
strong excitations result from a first-order character of
the roton instability in 2D.

We explain the interaction quench dynamics by
calculating the elementary excitations of the unmodulated
BEC close to the roton instability, i.e., for a, = 92ay.
These results are displayed in Fig. 1(b) as the dynamic
structure factor S(k,®), which predicts the system
response to perturbations of momentum #k and energy
hw [28,63-65] (also see Ref. [40]). A roton minimum can
be seen at k[, ~ 1.1, and we plot the lowest roton modes
corresponding to m = 0, 1, 2, with m being the angular
quantum number in the z direction [66]. On the top right is
the density obtained by adding an m = 2 roton mode to the
BEC wave function, revealing how rotons are confined to
high-density regions [67,68]. This reveals a qualitative
difference between the 1D and 2D situations, since, from a
simple geometric standpoint, in 2D the high-density region
inherently encompasses a smaller proportion of the total
atom number. Thus, the roton-induced droplet number is
only a small fraction of the final droplet number, meaning
the droplets appear sequentially for 2D.

Another qualitative difference between 1D and 2D is a
kind of frustration. First, note that our target supersolid
ground state for the final quench parameters is a 19-droplet
crystal, with a central droplet [see the inset of Fig. 2(b)].
Only an m = 0 roton mode [see Fig. 1(b)] could directly
trigger the formation of a central droplet, but then only
concentric rings could form further out. Thus, unlike for
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FIG. 2. Supersolid quality. (a) Global phase coherence C? over
time for interaction quenches [quench (i)] into linear chain (blue)
and pancake crystal (red) and temperature quenches [quench (ii)]
into the pancake crystal (black). Diamonds link to example
frames in Figs. 1(a) and 1(c). Each curve is averaged over 3-5
runs with an error band marking one standard deviation. Time
t =0 corresponds to when the crystals first fully mature.
(b) Density overlap C¢ between the time-dependent and ground
state densities. Parameters are the same as Fig. 1, but for linear
chain f,, . = (33,110,167) Hz and N = 82 x 10°.

1D, no single roton mode can smoothly connect the
unmodulated BEC to the 2D supersolid ground state.

Next, we analyze the finite-temperature quench results.
Figure 1(c) shows snapshots of the condensate growth,
demonstrating that both the crystal structure and the
global phase coherence—evidenced by the uniform color
in Fig. 1(c4)—develop soon after the quench. Note that
timescales will be quantified shortly. It is also an important
result in itself that we predict such a large 2D supersolid
to be stable against thermal fluctuations (recall that
Ttina = 30 nK). As they form, each droplet individually
has a uniform phase that may be different from that of its
neighbors, sometimes creating vortex pairs between drop-
lets of different phase. In this scenario, the droplets do
not form as a result of a roton instability, and the partial
phase coherence continues to improve after the crystal
has formed, consistent with earlier observations [34].
Occasionally, long-lived isolated vortices remain near the
center of the supersolid. Simulation videos are provided in
Supplemental Material [40].

Supersolid quality.—We seek to quantify the resulting
supersolid quality for both quench protocols. We start
by analyzing the phase excitations, taking the phase
coherence CP with a similar measure presented in
Ref. [10]. A value of C” =1(0) implies global phase
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coherence (incoherence) [69]. In Fig. 2(a), we plot this
quantity for interaction quenches into the pancake super-
solid regime (red) and linear supersolid regime (blue) and
temperature quenches into the pancake supersolid (black).
The time ¢ = 0 indicates when the droplet number has
approximately stabilized and the crystal has first matured
[70]. For the linear chain, the system remains coherent
(high C? = 0.8), indicating a stable supersolid. However,
quenching into the pancake geometry is qualitatively
different, with strong incoherence (C? =~ 0.3) soon after
crystal formation, recovering a high value at around 150 ms
after the crystal forms. During evaporative cooling, the
global phase coherence is predicted by the high value of
C? ~ 0.8 around 50 ms after the crystal forms, with
qualitatively similar values to the interaction quench
simulations for the linear supersolid case.

We quantify the quality of the supersolid crystal by
measuring the density overlap C¢ between the ground state
target solution and the time-dependent wave function [71].
We find the maximal value of C¢ after applying translations
and rotations to the state, noting that perfect overlap would
give C¢ = 1. In Fig. 2(b), this quantity is presented for the
two geometries, with the ground state solutions shown as
insets. For the linear chain, once the droplets have formed,
the density overlap rapidly attains C? > 0.9 and remains
there, consistent with the interaction quenched state being
close to the ground state supersolid. However, the pancake
case shows weak overlap after the droplets are formed,
which only recovers slowly—after around 300 ms—to
values comparable with the linear chain. Primarily, this is
due to the sensitivity of droplet positions of C? and
indicates that there are many excited supersolid modes
present after the droplets form [40]. Direct evaporative
cooling for the pancake case, however, shows that after the
droplets have formed they rapidly settle into the expected
crystal pattern (C¢ = 0.95).

Finally, it is important to note that for the pancake
interaction quench, while the phase coherence is restored
by around 7 = 150 ms after the droplets are formed, the
crystal remains highly excited until around 300 ms. On
these timescales, three-body losses become significant, and
it is unlikely that a large supersolid would be observed. In
contrast, direct evaporative cooling may lead to a robust
supersolid within around 50 ms of the crystal first appear-
ing, a timescale that we find to be weakly dependent on the
value of y [40].

Experimental observation.—While experiments have
evaporatively cooled directly into the supersolid phase
for linear and elongated 2D configurations [12,13,34],
this could prove an optimal method in circular traps for
avoiding the excitations associated with crossing the
roton instability. We confirm this by producing a 7-droplet
hexagon supersolid in a near-circular trap, as shown in
Fig. 3. The experimental apparatus and procedure is similar
to that described previously [13], but new modifications in
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FIG. 3. Experimental realization of a 7-droplet hexagon state.
(a) Exemplary in situ image of the density profile. (b) Image after
36 ms time-of-flight (TOF) expansion, averaged over 68 trials of
the experiment. Hexagonal modulation structure is clearly present
in the averaged image. Note the rotation of the hexagon between
in situ and TOF images. (c),(d) Corresponding simulations for
the same trap, and with a, = 90a, and ~4.4 x 10* atoms within
the droplets.

the optical dipole trap setup have enabled us to tune
between anisotropic and round traps. The current optical
trap consists of three 1064 nm wavelength trapping beams,
each propagating in the plane perpendicular to gravity. Two
of the beams, which cross perpendicularly, have approx-
imately 60 ym waists and define the horizontal trapping
frequencies. The third, crossing at a roughly 45° angle from
the others, has a waist of approximately 18 ym and is
rapidly scanned to create a time-averaged light sheet that
defines the vertical confinement.

In a harmonic trap with frequencies f,, = [47(1),
43(1),133(5)] Hz, we observe in trap a 7-droplet state
consisting of a hexagon with a central droplet, with a
condensate atom number of N ~4 x 10* [Fig. 3(a)]. To
confirm that this state is phase coherent, we release the
atoms from the trap and image the interference pattern after
36 ms time of flight [Fig. 3(b)]. The presence of clear
modulation in the interference pattern averaged over
68 runs of the experiment indicates a well-defined and
reproducible relative phase between the droplets and is
consistent with our expectations for a phase-coherent state
undergoing expansion [Fig. 3(d)], obtained through 3D
dynamic simulations starting from the eGPE ground state
[Fig. 3(c)]. Even rounder traps are possible, but the slight
anisotropy orients the state, helping to observe the repro-
ducible interference pattern.

Summary.—We have theoretically explored the forma-
tion of large 2D supersolids using both an interaction
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quench from an unmodulated BEC and a temperature
quench from a thermal cloud. For the latter, we developed
a finite-temperature stochastic Gross-Pitaevskii theory that
can simulate evaporative cooling directly into the super-
solid regime. Our simulations predict that a temperature
quench provides a robust path for creating 2D supersolids
in circular traps, and we confirm this experimentally by
using this method to create a reproducible hexagonal
7-droplet supersolid.

In contrast, the interaction quench results in highly
excited crystals that lack global phase coherence in the
period following their formation. Interestingly, droplets
appear sequentially rather than simultaneously, with the
final crystal structure being unrelated to the roton modes
that seeded the instability. This is in contrast to the situation
for 1D arrays, where an interaction quench through a roton
instability can smoothly connect an unmodulated BEC to
the supersolid ground state.

Our finite-temperature theory is broadly applicable
for future studies on topics such as formation dynamics,
supersolid vortices, improved quench protocols to produce
large 2D supersolids, and thermal resilience, as well as
dipolar droplets in general.
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