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It is known that the loss of phase coherence of Cooper pairs in two-dimensional superconductivity
corresponds to the unbinding of vortex-antivortex pairs with the quasi-long-range order in the order-
parameter phase field, described by the Berezinskii-Kosterlizt-Thouless (BKT) transition of a 2D XY
model. Here we show that the second-order Josephson coupling can induce an exotic superconducting
phase in a bilayer system. By using tensor-network methods, the partition function of the 2D classical
model is expressed as a product of 1D quantum transfer operator, whose eigenequation can be solved by an
algorithm of matrix product states rigorously. From the singularity shown by the entanglement entropy of
the 1D quantum analog, various phase transitions can be accurately determined. Below the BKT phase
transition, an interlayer Ising long-range order is established at TIsing, and the phase coherence of both
intralayers and interlayers is locked together. For two identical layers, the Ising transition coincides with the
BKT transition at a multicritical point. For two inequivalent layers, however, there emerges an intermediate
quasi-long-range order phase (TIsing < T < TBKT), where the vortex-antivortex bindings occur in the layer
with the larger intralayer coupling, but only half-vortex pairs with topological strings exist in the other
layer, corresponding to the phase coherence of pairs of Cooper pairs. So our study provides a promising
way to realize the charge-4e superconductivity in a bilayer system.
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Introduction.—Superconductivity arises from electron
pairing and its phase coherence. In conventional Bardeen-
Cooper-Schrieffer superconductors, the electron pairing
and condensation of Cooper pairs always happen simulta-
neously, and the superconducting transition is determined
by the pairing temperature. In two dimensions, however,
the true transition can be substantially below the pairing
temperature and is controlled primarily by thermal fluctua-
tions in the phase field of the order parameter [1–7]. In the
Ginzburg-Landau theory, when the magnitude fluctuation
of the order parameter is frozen, the phase field fluctuation
can be characterized by the 2D XY spin model, and the loss
of phase coherence among the Cooper pairs corresponds
to the unbinding of vortex-antivortex pairs with the quasi-
long-range order (quasi-LRO), characterized by the
Berezinskii-Kosterlizt-Thouless (BKT) phase transition
[8–10].
In recent years there has been increasing interest in a

bilayer structure of coupled 2D superconducting systems
[11–15]. When a direct Josephson coupling is present, the
relative phase of the order parameters is pinned to a fixed
value, so both phase locking and phase coherence of the
Cooper pairs are characterized by a single BKT transition
[16]. However, when the direct Josephson coupling is
suppressed [4,5], the second-order Josephson coupling is

dominant, and an Ising-like transition for the phase locking
occurs at TIsing, which is usually lower than the BKT
transition temperature TBKT. For the inequivalent coupled
layers, it was argued that there exsits an intermediate phase
(TIsing < T < TBKT) with partial order: one layer is in
disordered phase and the other layer has vortex-antivortex
pairs with quasi-LRO [17]. Because of the lack of sharp
thermodynamic signatures for the BKT transition, it cannot
unambiguously determine whether the transition for the
identical coupled layers is a single or double transition with
an intervening unlocked phase [17]. Actually, the nature of
the intermediate phase with partial order has not been fully
explored, so it is a great challenge to determine the global
phase diagram and calculate the properties of the inter-
mediate phase accurately.
Recently, tensor-network methods have become a

powerful tool to characterize correlated quantum many-
body phases and their phase transitions in the thermo-
dynamic limit [18,19]. Since the partition function of a 2D
statistical model can be represented as a tensor product of a
1D quantum transfer operator [20], the correspondence
eigenequation can be efficiently solved by the algorithm of
variational uniform matrix product states [21–24]. In this
Letter, we apply this method to the bilayer system.
According to the singularity displayed by the entanglement
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entropy of the 1D quantum analog, various phase tran-
sitions can be precisely determined [25,26], and various
correlation functions of local observables are calculated
rigorously.
The derived global phase diagram is displayed in

Fig. 1(a). As the temperature decreases, the BKT transition
first occurs before a local interlayer Ising long-range order
is established. The Ising transition accompanies the vortex-
antivortex bindings in both intralayers and interlayers, as
shown in Fig. 1(c). For two identical layers, the Ising
transition coincides with the BKT transition at the multi-
critical point P. However, for two inequivalent layers, we
find that the intermediate phase has a quasi-LRO: vortex-
antivortex bindings occur only in the layer with the larger
intralayer coupling while half-vortex pairs emerge in the
other layer, schematically shown in Fig. 1(b). Since the
half-vortices are point singularities around which spin
directions rotate through an angle π on circumnavigation,
each pair of half-vortices is connected by a topological
string [27–30]. More importantly, as the quasi-LRO of the
phase fields can be viewed as the condensation of the
Cooper pairs of 2D superconductivity, the half-vortex pairs
with a quasi-LRO imply the condensate of pairs of the
Cooper pairs in the absence of phase coherence among the
Cooper pairs, corresponding to the charge-4e supercon-
ductivity [31–35].
Model and tensor-network methods.—The Hamiltonian

of a two-coupled XY spin model on a square lattice is
defined by

H ¼ −J1
X

hi;ji
cosðθi − θjÞ − J2

X

hi;ji
cosðφi − φjÞ

þ K
X

i

cosð2θi − 2φiÞ; ð1Þ

where θi and φi ∈ ½0; 2π� are two U(1) phase fields describ-
ing the pairing order parameters on the upper and lower
layers, respectively, J1 and J2 are their respective nearest-
neighbor intralayer couplings, and K denotes the second-
order Josephson interlayer coupling. Because of the nature
of the low-temperature phase, the interlayer coupling is
always relevant for any finite value of K, and the
phase fields θ and φ are no longer two independent U(1)
variables. At low temperatures, the relative phase
σi ≡ θi − φi is reduced to a Z2 variable, which can be
explicitly displayed in the limit ofK → ∞,φi ¼ θi þ πsi=2,
with si ¼ �1. The reduced Ising-XY coupled model
was intensively studied by various numerical methods
[36–40].
In the tensor-network framework, the partition function

is expressed as a contraction of local tensors defined on the
original square lattice, given by

Z ¼
Y

i

ZZ
dθidφi

ð2πÞ2
Y

hi;ji
eβJ1 cosðθi−θjÞ

× eβJ2 cosðφi−φjÞe−βK cosð2θi−2φiÞ; ð2Þ

where β ¼ 1=T is the inverse temperature. To obtain its
tensor-network representation, we apply a duality trans-
formation that maps the phase variables on each lattice site
to the number indices on the nearest-neighbor links. Such a
map is achieved by the character decomposition ex cos θ ¼P∞

n¼−∞ InðxÞeinθ for each Boltzmann factor, where InðxÞ is
the modified Bessel function of the first kind. Then the
partition function is represented as

Z ¼
Y

i

ZZ
dθidφi

ð2πÞ2
Y

l∈L

X

nl;ml;kl

InlðβJ1ÞIml
ðβJ2Þ

× Iklð−βKÞeinlðθi−θjÞeimlðφi−φjÞei2klðθi−φiÞ; ð3Þ

where nl (ml) runs over every link on the upper (lower)
layer, and kl corresponds to every vertical link between θi
and φi. By integrating out all the phase degrees of freedom,
the partition function is transformed into a double tensor
network as shown in Fig. 2(a),

Z ¼ tTr
Y

i

On3m3;n4m4
n1m1;n2m2

ðiÞ; ð4Þ

where “tTr” denotes the tensor contraction over all
auxiliary links. The details are given in Supplemental
Material [41]. As displayed in Fig. 2(b), each local tensor
O is defined by

On3m3;n4m4
n1m1;n2m2

¼
X

k

�Y4

l¼1

InlðβJ1ÞIml
ðβJ2Þ

�1=2

× IkðβKÞδn3þn4
n1þn2þ2kδ

m3þm4þ2k
m1þm2

; ð5Þ
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FIG. 1. (a) The finite-temperature phase diagram of the bilayer
system. Herewe chooseK ¼ 0.5J1. In the low-temperature phase,
there emerges an interlayer Ising-like long-range order. The BKT
and Ising transitions merge together at the point P. (b) The
schematic picture of the quasi-LRO phase 2, while the quasi-LRO
phase 1 is obtained by switching the upper and lower layers.
(c) The schematic picture of the low-temperature ordered phase.
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where the interlayer k indices are summed over and the
corresponding intralayer ml and nl indices are grouped
together. The globalUð1Þ invariance of the bilayer model is
encoded in each local tensor: On3m3;n4m4

n1m1;n2m2
≠ 0 only if

n1 þm1 þ n2 þm2 ¼ n3 þm3 þ n4 þm4. Since the
expansion coefficients in the Bessel function InðxÞ decrease
exponentially as increasing n, an accurate truncation can be
performed on the virtual indices of the local tensors.
In the tensor-network approach, the row-to-row transfer

matrix composed of an infinite row of O tensors is a 1D
quantum transfer operator, whose logarithmic form gives
rise to a 1D quantum model with complex spin-spin
interactions. Under such a correspondence, the finite-
temperature properties of the 2D statistical problem are
exactly mapped into a 1D quantum model at zero temper-
ature. In the thermodynamic limit, the value of the partition
function is determined by the dominant eigenvalues
of the transfer operator, whose eigenequation sketched in
Fig. 2(c) is

TjΨðAÞi ¼ ΛmaxjΨðAÞi; ð6Þ

where jΨðAÞi is the leading eigenvector represented by
uniform matrix product states (UMPS) consisting of local A
tensors [42]. This eigenequation can be accurately solved
by the algorithm of variational uniform matrix product
states [21–24], and the largest eigenvector jΨðAÞi corre-
sponds to the fixed-point solution. The precision of this
approximation is controlled by the auxiliary bond dimen-
sion D of the local A tensors.
From the fixed-point UMPS for the 1D quantum transfer

operator, various physical quantities can be estimated
accurately. As far as the phase transitions are concerned,
the quantum entanglement entropy is the most efficient
measure [43,44], which can be directly determined via the
Schmidt decomposition of jΨðAÞi: SE ¼ −

P
D
α¼1 s

2
α ln s2α,

where sα are the singular values. And the two-point
correlation function of the local observable hi defined by
GðrÞ ¼ hhjhjþri can be evaluated by the trace of an infinite
sequence of channel operators containing two local impu-
rity tensorsMj andMjþr, as shown in Fig. 2(d). The details
can be found in Supplemental Material [41].
Phase diagram.—Since the interlayer coupling is always

relevant, the structure of the complete phase diagram is
independent of its value, so we simply choose a practical
value K=J1 ¼ 0.5. Importantly, we have noticed that the
entanglement entropy SE of the fixed-point UMPS for the
1D quantum transfer operator exhibits singularity, which
provides an accurate criterion to determine the transition
points. To obtain the phase diagram, we have to numeri-
cally calculate the entanglement entropy under a wide
range of intralayer coupling ratios J2=J1. In Fig. 3(a), the
entanglement entropy along J2=J1 ¼ 1.5 develops two
sharp peaks at Tc1 ≃ 1.21J1 and Tc2 ≃ 1.44J1, respectively.
When J2 approaches J1, these two peaks merge together,
leading to a single peak at T� ≃ 1.095J1, as shown in
Fig. 3(b). These peak positions are nearly unchanged under
the bond dimensions D ¼ 90, 100, 110. So the phase
boundaries can be determined with high precision and the
complete phase diagram is displayed in Fig. 1(a).
In order to gain insight into the essential physics of

different phases, we calculate the specific heat. Within the
tensor-network framework, the internal energy per site is
calculated as

u ¼ −2J1heiðθj−θjþ1Þi − 2J2heiðφj−φjþ1Þi þ Kheið2θj−2φjÞi;

and the specific heat is obtained by CV ¼ ∂u=∂T. As
shown in Fig. 3(c), along the line J2=J1 ¼ 1.5, the specific
heat exhibits a logarithmic divergence at Tc1 but a small
bump around Tc2. However, for J2=J1 ¼ 1, a single
logarithmic singularity is observed at T� as displayed in

(a) (b)

(d)(c)

FIG. 2. (a) Tensor-network representation of the partition
function. (b) The construction of the local tensor O in the
partition function. (c) Eigenequation for the fixed-point UMPS
jΨðAÞi of the 1D quantum transfer operator T. (d) Two-point
correlation function represented by contracting a sequence of
channel operators.

(a)

(c) (d)

(b)

FIG. 3. (a),(b) The entanglement entropy as a function of
temperature for J2=J1 ¼ 1.5 and J1 ¼ J2, with K ¼ 0.5J1. (c),
(d) The specific heat and the local Ising order parameter along
J2=J1 ¼ 1.5 and J1 ¼ J2, respectively.
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Fig. 3(d). The logarithmic specific heat at the lower
temperature reminds us of a 2D Ising phase transition with
a Z2 symmetry breaking, while the small bump at the
higher temperature indicates the nearby BKT transition.
At low temperatures, since the relative phase field

σi ≡ θi − φi is reduced to a Z2 variable, a local interlayer
Ising order parameter can be defined by τ ¼ hsin σii. As
shown in Figs. 3(c) and 3(d), τ is finite below Tc1,
indicating that the phase lock occurs between the upper
and lower layers. When J2=J1 ¼ 1, the Ising transition
coincides with the BKT transition exactly at the multi-
critical point P, where there is an interplay between the
Ising and BKT degrees of freedom at the microscopic level,
exhibiting a new universality class of critical properties
with emerged supersymmetry [45].
Correlation functions and spin stiffness.—To further

explore the nature of the intermediate temperature phase,
we calculate the two-point correlation functions of the XY
spins and nematic spins, which represent the integer
vortices and half-integer vortices variables in the bilayer
system, respectively. The results are summarized in Table I.
For J2=J1 > 1, the spin-spin correlation function of the

lower layer GφðrÞ starts to decay algebraically at Tc2 as the
temperature decreases. When approaching Tc2 from above,
the spin correlation length ξφ is well fitted by an exponen-
tially divergent form,

ξðTÞ ∝ exp

�
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T − TC
p

�
; T → Tþ

C; ð7Þ

where b is a nonuniversal positive constant. This is the
characteristic feature of the BKT transition. Below Tc1, the
spin-spin correlation functions of both the intralayer GθðrÞ
and the interlayer GθφðrÞ exhibit the algebraic behavior,
implying the vortex-antivortex bindings in both intralayers
and interlayers, a fully phase-coherent state of the Cooper
pairs in the bilayer system.
When we focus on the quasi-LRO-2 phase, the spin-spin

correlation function GφðrÞ in the lower layer decays
algebraically, while in the upper layer it is the correlation
function of the nematic spins G2θðrÞ that exhibits an
algebraic behavior, instead of the correlation function of
the XY spins GθðrÞ:

GθðrÞ ¼ heiðθj−θjþrÞi ∼ e−r=ξθ ;

G2θðrÞ ¼ heið2θj−2θjþrÞi ∼ r−η2θ : ð8Þ

For a given value of J2=J1 ¼ 1.5 and T=J1 ¼ 1.3, the
comparison between the spin-spin correlation function and
nematic correlation function is displayed in Figs. 4(a)
and 4(b). Such a behavior indicates that the integer vortices
in the upper layer are fractionalized into half-integer vortex
pairs due to the presence of the interlayer squared cosine
interaction. Since the half-integer vortices are pointlike
topological defects about which the phase angles of spins
wind by π, each pair of half-vortices should be connected
by a topological string across which spins are antiparallel.
Because the integer vortex-antivortex pairs with quasi-LRO
are regarded as the phase condensation of the Cooper pairs
in 2D, the half-integer vortex pairs with quasi-LRO can be
regarded as the condensation of pairs of the Cooper pairs in
the absence of the phase coherence among the Cooper pairs
[31,32]. Such a phenomenon is just the characteristics of
the charge-4e superconductivity [33–35].
To access the superfluid response of the bilayer system,

we calculate the spin stiffness or the helicity modulus
defined by the second derivative of the free-energy density
with respect to a twist v along a given direction [46,47],
ρs ¼ ð∂2f=∂2vÞjv¼0. The twist needs to be taken in a way
that respects the joint U(1) symmetry of the coupled
bilayer, and the spin stiffness is expressed in terms of
two-point functions within the framework of tensor-net-
work methods [48,49]. Since the process is more technical,
the details are given in the Supplemental Material [41]. The
jump of spin stiffness should be altered from the BKT
predictions ρs=TBKT ¼ 2=π due to the emergence of half-
vortices [50]. In Fig. 5, the numerical spin stiffness as a
function of temperature is shown for J2=J1 ¼ 1.0–1.8 with
the interlayer coupling K=J1 ¼ 0.5. It can be seen that the
spin stiffness starts to dramatically increase from zero
around the BKT transition temperature Tc2. When the
temperature decreases, a cusp point forms in the further
increase of the spin stiffness, corresponding to the Ising
phase transition Tc1 precisely. Surprisingly, the cusp points

TABLE I. Properties of correlation functions in the different
phases of the phase diagram in Fig. 1.

Disordered Quasi-LRO-1 Quasi-LRO-2 Ordered

heiðφi−φjÞi ∼e−r=ξφ ∼e−r=ξφ ∼r−ηφ ∼r−ηφ

hei2ðφi−φjÞi ∼e−r=ξ2φ ∼r−η2φ ∼r−η2φ ∼r−η2φ

heiðθi−θjÞi ∼e−r=ξθ ∼r−ηθ ∼e−r=ξθ ∼r−ηθ

hei2ðθi−θjÞi ∼e−r=ξ2θ ∼r−η2θ ∼r−η2θ ∼r−η2θ

heiðθi−φjÞi ∼e−r=ξθφ ∼e−r=ξθφ ∼e−r=ξθφ ∼r−ηθφ

heiðσi−σjÞi ∼e−r=ξσ ∼e−r=ξσ ∼e−r=ξσ ∼const

(a) (b)

FIG. 4. The properties of the quasi-LRO phase 2 when
J2=J1 ¼ 1.5, K=J1 ¼ 0.5, and T=J1 ¼ 1.3. (a) The correlation
functionof theXY spins showsanexponential decay.The inset is an
exponential fitting. (b)Thecorrelationfunctionof thenematic spins
exhibits a power law decay. The inset is fitted by a power law.
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for given values of J2=J1 sit on a straight line, which is a
key experimental feature of the presence of the Ising phase
transition within the superconducting phase.
Conclusion.—We have used the tensor-network methods

to study the bilayer system of two-coupled 2D XY spin
models. The global finite-temperature phase diagram has
been accurately determined. It has been found that, as the
temperature decreases, the BKT transition always happens
above the phase locking of the bilayer system, which
corresponds to an interlayer Ising long-range order. More
importantly, for two inequivalent coupled bilayers, there
exists an intervening unlocked phase, where the half-
integer vortex pairs form in one layer with the smaller
intralayer coupling, coexisting with the integer vortex-
antivortex pairs in the other layer. When a weak direct
Josephson coupling is also present, we have further proved
that the Ising phase transition below the BKT transition
survives and the main results of this work are still valid,
because two local minima always exist to lock the phase
fields of the upper and lower layers.
Recently, a new family of superconductorsACa2Fe4As4F2

(A ¼ K, Rb, Cs) has synthesized [51], and these compounds
can be viewed as an intergrowth of AFe2As2 and CaFeAsF
layers. The transport and magnetic measurements on single
crystals of CsCa2Fe4As4F2 showed a large resistivity
anisotropy that tends to increasewith decreasing temperature,
and the 2D superconducting fluctuations have been observed
[52]. The evolution of the in-plane penetration depth shows an
inflection point around 10 K, indicating that a potentially
“magnetic” phase appears but does not compete with super-
conductivity [53]. These features may be related to the
formation of the interlayer Ising long-range order and the
manifestation of the phase coherence of pairs of Cooper pairs
revealing a cusp point in the spin stiffness. Therefore, these
compounds aregood candidate systems to explore the charge-
4e superconductivity.
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