
Twisted Two-Dimensional Material Stacks for Polarization Optics

Kaveh Khaliji,1,* Luis Martín-Moreno ,2,3 Phaedon Avouris,1,4 Sang-Hyun Oh,1 and Tony Low1,†
1Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
2Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain

3Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
4IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA

(Received 24 October 2021; accepted 7 April 2022; published 12 May 2022)

The ability to control the light polarization state is critically important for diverse applications in
information processing, telecommunications, and spectroscopy. Here, we propose that a stack of
anisotropic van der Waals materials can facilitate the building of optical elements with Jones matrices
of unitary, Hermitian, non-normal, singular, degenerate, and defective classes. We show that the twisted
stack with electrostatic control can function as arbitrary-birefringent wave-plate or arbitrary polarizer with
tunable degree of non-normality, which in turn give access to plethora of polarization transformers
including rotators, pseudorotators, symmetric and ambidextrous polarizers. Moreover, we discuss an
electrostatic-reconfigurable stack which can be tuned to operate as four different polarizers and be used for
Stokes polarimetry.
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Introduction.—Polarization optics or the science of con-
trolling the polarization state of electromagnetic waves has
broad applicability in areas such as polarimetric imaging,
biosensing, and optical communication [1–3]. The central
building blocks in polarization optics are polarization
transformers; optical devices which scatter polarized light
into a predefined polarization state. Broadly speaking, there
are two strategies used to build such devices. One way is to
cascade transmissive optical elements, where stacking order
and relative orientation between the principal axes of the
elements determine the polarization output [4,5]. For in-
stance, a common way to build a circular polarizer is by
cascading a linear polarizer and a quarter-wave plate, with
the transmission direction of the polarizer at 45° to the fast
axes of the retarder. However, state-of-the-art quarter-wave
plate uses bulky linear birefringent crystals, since it requires
a significant propagation distance to establish the phase
difference between orthogonal polarizations. The other way
is to utilizemetasurfaceswith patternedmetallic or dielectric
structures, whose metaelements can be designed to deliver a
preselected polarization transformation [6–13]. For exam-
ple, patterned structures with no rotational symmetry, but
with out-of-plane (including surface normal) mirror sym-
metry would guarantee linear birefringence upon normal
illumination [14,15]. The built-in spatial symmetries of
metaelements by design restricts the transformation func-
tions these devices can deliver.
The family of atomically thin two-dimensional materials

which emerged in 2004 with the isolation of graphene [16–
18], now includes materials with diverse optical properties
ranging from dielectrics to metals with anisotropy or
hyperbolicity in the terahertz to midinfrared spectral range

[19–22]. In addition to the steady growth in the 2D
materials library, there has been great progress on the
fabrication of high quality van der Waals heterostructures
[23–25], control of twist angle between stacked layers
[26,27], and modulation of Drude weight via doping up to
maximum carrier concentration of 1014 cm−2 [28].
The previous works on heterostack twisted 2D materials

have been exclusively on near-field polaritonic optics
[29,30]. Here, however, we will explore their potential
for polarization control in the far field. We focus on
nondepolarizing polarization transformers, i.e., those which
can be described via Jones matrix [31]. We show that
stacking of twisted anisotropic 2D materials, even in its
homogenous form without any patterning, allows for facile
realization of diverse optical polarization transformers.
Herein, both anisotropy and twist are key ingredients
breaking the rotational and mirror symmetries, which in
turn allows for a free-form Jones matrix which can be
selectively tuned via controlled twisting and stacking order.
We theoretically demonstrate how electrostatic doping can
give the stack an unprecedented ability to toggle between
functionalities via tuning the eigenspectrum and eigenpo-
larization of the Jones matrix.
Mathematical preliminaries.—The Jones matrix of an

optical element provides a full description of the polari-
zation changes that a beam of light undergoes as it passes
through the element. The Jones matrix in its general form
can be written as [32,33]:

J ¼
�
Jxx Jxy
Jyx Jyy

�
¼ PΛP−1: ð1Þ

PHYSICAL REVIEW LETTERS 128, 193902 (2022)

0031-9007=22=128(19)=193902(6) 193902-1 © 2022 American Physical Society

https://orcid.org/0000-0001-9273-8165
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.193902&domain=pdf&date_stamp=2022-05-12
https://doi.org/10.1103/PhysRevLett.128.193902
https://doi.org/10.1103/PhysRevLett.128.193902
https://doi.org/10.1103/PhysRevLett.128.193902
https://doi.org/10.1103/PhysRevLett.128.193902


The second equality in (1) is the Jordan decomposition,
which states that for any Jones matrix there exists an
invertible matrix P and a Jordan matrix Λ which can adopt
one of the following forms:

Λ1 ¼
�
λa 0

0 λb

�
; Λ2 ¼

�
λ 1

0 λ

�
: ð2Þ

The Jordan form Λ1 corresponds to matrices J that are
diagonalizable and have two linearly independent eigen-
vectors jai, jbi and two eigenvalues λa, λb, respectively. In
this case, P is a matrix whose columns are the eigenvectors
jai and jbi, with jai ≠ jbi. The diagonalizable J is normal
or non-normal depending on whether hajbi ¼ 0 or not.
Note that Hermitian and unitary Jones matrices are normal.
The diagonalizable J is degenerate if λa ¼ λb or singular if
λa or λb is zero.
The Jordan form Λ2 corresponds to defective matrices J

that are not diagonalizable. They have only one eigenvector
jai with eigenvalue λ. In this case, the eigenvector jai and
the so-called generalized eigenvector which satisfies the
equation ðJ − λIÞjgi ¼ jai constitute the columns in P.
Here, I is the identity matrix. Note the defective J can also
be singular if λ ¼ 0. We use Eqs. (1) and (2) to construct a
desired Jones matrix given its eigenvalues and eigenvec-
tors. Mathematically, Jones matrix can also be written in the
following way (see Supplemental Material, S1 [34]):

J ¼ λa
hb⊥jai

jaihb⊥j þ
λb

ha⊥jbi
jbiha⊥j ð3Þ

for diagonalizable J, and

J ¼ λIþ 1

ha⊥jgi
jaiha⊥j ð4Þ

for defective Jones matrices. Here, ja⊥i ¼ ½−a�y; a�x�T is the
orthogonal state to the eigenstate jai ¼ ½ax; ay�T , i.e.,
ha⊥jai ¼ 0. Note that the normal Jones matrix is a special
case in Eq. (3) with jbi ¼ ja⊥i.
Designer Jones matrices via stack and twist.—Here, we

consider normal illumination along the z axis. The chosen

operating frequency of the devices is 20 THz. The
2D materials we use are black phosphorus (BP) and
orthorhombic molybdenum trioxide (α-MoO3), see
Supplemental Material, S2 [34] for the material parameters
[35–40]. We assume that the 2D layers are embedded
within a uniform dielectric background (air). This rules out
asymmetric effects due to the presence of a substrate and
dielectric spacers. The scattering coefficients of the N-layer
stack, where each layer can be either α-MoO3 or BP are
obtained via the transfer-matrix method (see Supplemental
Material, S3 [34]) [41]. The twist angle for each layer is
measured relative to the x axis. The design parameters
(including thickness and twist angle of BP and α-MoO3, the
layer spacing, and the chemical potential in BP) are
determined numerically by use of the nonlinear program-
ming solver FMINCON in MATLAB and minimization of the
cost function defined as

P
ij jJij − Jdijj, where fi; jg ∈

fx; yg and Jd is the element of desired Jones matrix. We
should comment on the choice of BP and MoO3. This is
because for these materials the analytic conductivity
expressions for different thicknesses and dopings are
available and one can efficiently solve for the stack which
minimizes the cost function.
Figure 1 shows examples of Jones matrices in three

classes which can be generated from a few layer stack of BP
and α-MoO3. In Fig. 1(a) the structure gives a degenerate
ðλa ¼ λb ¼ 0.5iÞ and non-normal ðh0°j45°i ≠ 0Þ Jones
matrix. In panel (b), the Jones matrix is normal
ðh−45°j45°i ¼ 0Þ and singular ðλa ¼ 0; λb ¼ 0.5iÞ. In
panel (c), the stack gives a nearly defective Jones matrix,
i.e., the parameter setting points to an exceptional point in
polarization space where the eigenvalues and eigenvectors
of the Jones matrix nearly coalesce on 0.5i and j45°i,
respectively.
The stacks in Fig. 1 are examples of static Jones matrix

engineering, static in the sense that one Jones matrix
corresponds to one stack. Next, we focus on electrostatic
doping and its ability to tune the eigenvectors and eigen-
values of a few polarization transformers. More explicitly,
we discuss transformers in which the layer number, layer
separations, and twist angles are fixed and we only change
the doping in the BP layers [42,43]. Note that the MoO3

x

z y

(a) (b) (c)

FIG. 1. The eigenview of various classes of Jones matrices constructed by twisted stack of BP and MoO3 which are represented by
light gray and dark gray planes, respectively. (a)–(c) The left panels depict the two eigenvalues and the corresponding polarization
ellipses of the Jones matrices of the structures shown on the right.
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optical response is due to its optical phonons and is not
tunable with doping. We will further show that with a
increase in complexity, it is possible to have a single system
which presents several (doping dependent) Jones matrix
functionalities. Additionally, one can use electrostatic
control to retrieve the desired functionality in the case
when twist angles or layer thicknesses deviate from the
optimum settings (see Supplemental Material, S4 [34]).
To better guide the reader, here we outline what lays

ahead: (1) We begin with tunable wave plates. We describe
how the Jones matrix of a generic wave plate looks like
(unitary). We show that the electrostatic control allows for
tuning both the wave-plate retardation (its eigenvalues) and
birefringence type (its eigenvectors). (2) We discuss polar-
izers next and introduce the Jones matrix of a generic
polarizer (Hermitian and singular). We will use these
polarizers to build a Stokes polarimeter. The twisted stack
can function as four different polarizers, where one can
switch from one polarizer to the other via a change in the
BP doping. (3) We close with a discussion on non-normal
and ambidextrous polarizers. The first corresponds to non-
normal and singular while the other corresponds to defec-
tive and singular Jones matrices. These polarizers are
peculiar in a sense that they are asymmetric, i.e., they
act differently depending on which direction light prop-
agates through the stack.
Arbitrary-birefringent wave plates.—The term wave

plate (retarder) refers to birefringent optical elements where
the element anisotropy induces a phase shift η between its
two orthogonal eigenpolarizations. The most general case
is an elliptic retarder, whose eigenstates are given by a pair
of orthogonal Jones vectors,

jai ¼
�

cos α

sin αeiδ

�
; jbi ¼

�
− sin αe−iδ

cos α

�
; ð5Þ

corresponding to eigenvalues, λa ¼ eiη=2 and λb ¼ e−iη=2,
respectively. The ðα; δÞ pair determines the orientation ϕ,
ϕþ π=2 and ellipticity angles ϵ, −ϵ for jai and jbi,
respectively, such that tan 2ϕ ¼ tan 2α cos δ, sin 2ϵ ¼
sin 2α sin δ [44]. A generic retarder is then represented
by a unitary Jones matrix JR:

JRðα; δ; ηÞ ¼
"
c2αeiη=2 þ s2αe−iη=2 is2αsη=2e−iδ

is2αsη=2eiδ s2αeiη=2 þ c2αe−iη=2

#
;

ð6Þ

where, sx ≡ sin x and cx ≡ cos x. Note that δ ¼ 0 denotes
linear retarders. α ¼ 45° and δ ¼ �90° gives circular
retarders which can also be interpreted as η=2 polarization
rotator, i.e., it only rotates the major axis of the polarization
ellipse with angle η=2 but keeps the ellipticity and handed-
ness intact. The retarder action on the Poincaré sphere can
be described as a rotation with the rotation axis defined by

the points corresponding to jai and jbi, i.e., eigenpolariza-
tion of JR and its rotation angle with retardance η.
In Fig. 2(a) we show an example of a tuneable wave

plate. In Fig. 2(b), the stack operates as a quarter-wave plate
(QWP, η ¼ 90°) with elliptic birefringence characterized by
α ¼ 27.4°, δ ¼ 45°. In Figs. 2(c) and 2(d) we show, by
modifying the electrostatic doping the same structure can
also function as a circular or linear birefringent (CB or LB)
retarder. The CB QWP is basically a 45°-polarization
rotator. The LB half-wave plate (HWP) with α ¼ 22.5°
corresponds to a 45° pseudorotator. The latter produces an
improper rotation, i.e., it rotates the polarization ellipse
major axis by 2α ¼ 45° and reverses the ellipse handed-
ness. The LB HWP can be used to implement right-left
circular polarization conversion. Note that the structure in
Fig. 2 has a transmission efficiency of ∼0.5 for its two
eigenpolarizations. This suggests that the polarization
effect is primarily birefringence and not dichroism. The
nonunity transmission also indicates that the corresponding
Jones matrices are scaled unitary, i.e., JJ† ∝ I. We note that
the wave-plate functionalities in Fig. 2 can be implemented
separately using stacks with fewer layers (see Supplemental
Material, S5 [34]).
Stokes polarimetry and asymmetric polarizer.—A dia-

ttenuator refers to an optical element that exhibits aniso-
tropic intensity attenuation. The most general case of a
diattenuator is the elliptic diattenuator (or elliptic partial
polarizer), whose eigenstates are given by a pair of
orthogonal Jones vectors jai and jbi as defined in
Eq. (5) corresponding to real eigenvalues λa ¼ p1 and

(a) (b)

(c)

(d)

x

z y

FIG. 2. (a) The seven-layer BP and MoO3 stack to achieve
(b) elliptical-birefringent QWP, (c) circular-birefringent QWP,
and (d) linear-birefringent HWP. The Fermi energies for each
constituent BP multilayer are listed in the order which gives the
result in panels (b), (c), and (d). In (b)–(d), the circles denote the
eigenstates while crosses represent j0°i and JRj0°i to showcase
the wave-plate-induced rotations in the Poincaré sphere.
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λb ¼ p2, respectively, with 0 ≤ p1;2 ≤ 1. A generic
diattenuator is then represented by a Hermitian Jones
matrix JD:

JDðα;δ;p1;p2Þ¼
"

p1c2αþp2s2α sαcαðp1−p2Þe−iδ
sαcαðp1−p2Þeiδ p1s2αþp2c2α

#
;

ð7Þ

where, sx ≡ sin x and cx ≡ cos x. When p2 ¼ 0, the diatte-
nuator totally extinguishes the eigenstate jbi and is called
an elliptic polarizer.
Here, we show that the cascaded twisted 2D materials

can be used for Stokes polarimetry, i.e., to determine the
unknown polarization state of the input light. The polar-
imetry is achieved by electrically toggling between four
distinct polarizers with different doping configurations as
light passes through a seven-layer twisted BP stack (see
Fig. 3). The doping can tune the polarizer eigenvectors, as it
allows the stack to switch between linear and circular
polarizers. We can also tune the polarizer eigenvalues,
while not changing its eigenvectors. This is shown in
Figs. 3(b) and 3(c), where the stack can be switched
between x- and y-linear polarizers. These so-called cross
polarizers have similar eigenvectors, but have the zero
eigenvalue swapped. The eigenvectors corresponding to
nonzero eigenvalues are used to accurately recover the
input polarization state via polarimetric data reduction
equation (see Supplemental Material, S6 [34]) [45].

(a) (b)

(c)

(d)

(e)

(f)
x

z y

FIG. 3. (a) The seven-layer twisted BP stack can switch
between (b) x-linear polarizer, (c) y-linear polarizer, (d) 45°-
linear polarizer, and (e) right-handed circular polarizer. The Fermi
energies for each constituent BP multilayer are listed in the order
which gives the result in panels (b), (c), (d), and (e). In (b)–(e), the
crosses represent the eigenpolarization with zero eigenvalue.
(f) The polarization ellipse corresponding to input light (gray) and
those measured (black) using the stack in panel (a) as Stokes
polarimeter. From left to right, the input Jones vectors are ½1; 0�T ,
½0.7071;−0.7071�T , ½0.7071; 0.7071i�T , ½0.5; 0.433þ 0.75i�T ,
and ½0.2236; 0.9747i�T .

(a)

x

z y

(b) (c)

(d)

z
xy

z
xy

(e)

(f) (g)

z
xy

z
xy

FIG. 4. (a) The seven-layer twisted BP stack optimized to function as two asymmetric polarizers with (b) Θ ¼ 90° and (c) Θ ∼ 0°. The
eigenpolarizations in (b) are j45°i and jRi. In (c) the eigenpolarizations are set to coalesce on j45°i. In (b) and (c), the crosses represent
the eigenpolarization with zero eigenvalue. The Fermi energies for each constituent BP multilayer are listed in the order which gives the
result in panels (b) and (c). In (d) and (e), the action of the non-normal polarizer in (b) and the nearly ambidextrous polarizer in (c) are
visualized in forward direction, respectively. (f) and (g) are the same as (d) and (e) for backward propagation. In (d)–(g) black arrows
show the propagation direction and black crosses denote blocked transmission.
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Till now, we have discussed only polarizers resulting
from normal Jones matrices. These are symmetric polar-
izers, i.e., they project any input into one output polariza-
tion, in both forward and backward propagation directions
[46]. To infer this, one should note that backward and
forward Jones matrices are related: Jb ¼ JT [47]. This
together with Eq. (3) gives J ∝ jaihaj and Jb ∝ jabihabj,
where jai ¼ ½ax; ay�T and jabi ¼ ½a�x; a�y�T denote identical
polarization states in forward and backward propagation
directions (see Supplemental Material, S7 [34]) [48,49].
Broadly speaking, the polarizer action can also be

achieved via non-normal or defective singular Jones matri-
ces [50]. These matrices represent asymmetric polarizers.
Let us illustrate this for the case of a defective Jones matrix,
where Eq. (4) gives J ∝ jaiha⊥j. Note the eigenvector of
this so-called ambidextrous polarizer corresponds to an
eigenvalue of zero, i.e., jai the eigenstate of the optical
element is blocked. The corresponding backward Jones
matrix can be written as Jb ∝ jab⊥ihabj. Note the blocked
eigenstate of Jb is jab⊥i.
In Fig. 4 we show that a seven-layer BP stack, via

electrostatic doping, can function as both non-normal
asymmetric polarizer j45°ihLj and nearly ambidextrous
polarizer j45°ih−45°j. From Figs. 4(b) and 4(c), it is clear
that the doping can tune the angle between polarizer
eigenvectors, i.e., its degree of non-normality. The latter
is measured with Θ, the angle subtended between the
polarizer eigenstates on the Poincaré sphere. Θ ¼ 0° and
180° denote ambidextrous and normal polarizers, respec-
tively. In Figs. 4(d)–4(g) we highlight the asymmetric
operation of the non-normal and ambidextrous polarizers.
Note that the non-normal polarizer acts as a linear polarizer
in forward and a circular polarizer in backward directions,
while the nearly ambidextrous polarizer has orthogonal
linear polarization states as its outputs in both forward and
backward directions.
Concluding remarks.—Our results concretely demon-

strate that it is possible to control the Jones matrix entries of
such stratified structures by adjusting the doping, twist
angle, and stacking order of anisotropic 2D layers. Note
that the two material systems included in this work do not
allow the access to all possible signs of conductivity
components changes in the mid-IR. This restricts the
input-output polarization mapping that can be assessed
by our BP-MoO3 structure. However, using new materials
including metallic 2D stacks with larger conductivity and
even patterned structures, which allow access to their
plasmons, clearly suggests twisted hetero-2D stacks con-
stitute a solid choice to build electrostatic-reconfigurable
polarization transformers.
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