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Two-dimensional Fermi gases with universal short-range interactions are known to exhibit a quantum
anomaly, where a classical scale and conformal invariance is broken by quantum effects at strong coupling.
We argue that in a quasi two-dimensional geometry, a conformal window remains at weak interactions.
Using degenerate perturbation theory, we verify the conformal symmetry by computing the energy
spectrum of mesoscopic particle ensembles in a harmonic trap, which separates into conformal towers
formed by so-called primary states and their center-of-mass and breathing-mode excitations, the latter
having excitation energies at precisely twice the harmonic oscillator energy. In addition, using Metropolis
importance sampling, we compute the hyperradial distribution function of the many-body wave functions,
which are predicted by the conformal symmetry in closed analytical form. The weakly interacting Fermi
gas constitutes a system where the nonrelativistic conformal symmetry can be revealed using elementary
methods, and our results are testable in current experiments on mesoscopic Fermi gases.
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Scale invariance arises in many areas of condensed
matter physics, for example, near second order phase
transitions [1,2]. For certain interacting many-body sys-
tems, a scale symmetry may even exist generically without
fine-tuning to a transition point [3–5]. The prominent
example of this is the unitary Fermi gas in atomic physics
[6], a nonrelativistic system for which a rescaling of time
and position coordinates by ðt;xÞ → ðλ2t; λxÞ leaves the
action invariant, changing the Hamiltonian by H → H=λ2;
the symmetry implies, for example, a homogeneous equa-
tion of state [7,8] and a vanishing bulk viscosity [9,10].
Even in a harmonic trap—a generic confining potential that
explicitly breaks scale invariance—the properties of the gas
are still constrained. This follows since scale invariance
implies an additional symmetry under special conformal
transformations ðt;xÞ → ðt;xÞ=ð1þ λtÞ [11,12], the gen-
erator C of which takes the same form as a harmonic
oscillator potential. Hence, the Hamiltonian Hω of a
trapped system is part of a nonrelativistic conformal
symmetry algebra formed by H, C, and the generator of
dilatations, D. [Formally, D ¼ −iX∇X and C ¼ X2=2 with
X ¼ ðr1; r2;…Þ a vector of particle coordinates, such that
Hω ¼ H þmω2C with m the particle mass and ω the trap
frequency.] The conformal symmetry then implies a one-to-
one correspondence between free-space eigenstates at zero

energy and certain states in a harmonic trap called primary
states [13,14]. This mapping is now applied beyond cold
atom physics to describe nuclear reactions in a conformal
window [15,16]. The symmetry also generates the spec-
trum of remaining nonprimary states through the ladder
operator [3,13,17,18]

L† ¼ −iDþHω

ℏω
−

C
l2
ho

; ð1Þ

where lho ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω

p
is the oscillator length, which when

acting on a primary state generates a breathing mode
with excitation energy 2ℏω. The microscopic origin of
this precise level spacing is linked to a separability of the
many-body wave function into a hyperradial part that
depends only on the modulus of the vector X [3,13].
A special situation arises for atoms confined in two

dimensions, which are described by the Hamiltonian

Hω ¼
X
iσ

�
−
1

2
∇2

iσ þ
r2iσ
2

�
þ g

X
ij

δð2Þðri↑ − rj↓Þ; ð2Þ

here written for two-component fermions with spin pro-
jection σ ¼↑;↓. Throughout the Letter, we use dimension-
less units with ℏω ¼ 1 and lho ¼ 1. The last term describes
a universal short-range interaction with dimensionless
coupling strength g. Because of the homogeneity of the
delta function, δð2ÞðλrÞ ¼ λ−2δð2ÞðrÞ, at first sight this
Hamiltonian is scale invariant. However, a delta-function
interaction in two dimensions is not well defined
and requires renormalization, such that g is replaced
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by a scale-dependent “running” coupling gðκÞ ¼
2π= lnð1=κa2Þ [5] that depends on a 2D scattering length
a2 and a characteristic wave number κ (for example, the
Fermi momentum or the inverse thermal wavelength),
which breaks scale invariance. This breaking of a classical
symmetry by quantum fluctuations is known as a quantum
anomaly [19,20]. However, in a quasi-2D geometry with
particles in the lowest state of a transverse harmonic
potential with oscillator length lz, the scattering length a2 ∼
lz exp½−

ffiffiffiffiffiffiffiffi
π=2

p ðlz=aÞ� is an exponentially small function of
the 3D scattering length a in the generic situation where
0 < a ≪ lz [4–6,21]. Scaling violations are then negligible,
and the gas is described by a constant (scale-invariant)
interaction with strength g ¼ ffiffiffiffiffiffi

8π
p

a=lz [4,6,22]. This is the
generic situation in 2D Bose gases [23–27], and it corre-
sponds to an easily accessed weak-interaction regime for
2D Fermi gases [28,29]. Hence, while much of the
discussion for Fermi gases is focussed on the quantum
anomaly at stronger interactions [30–39], there still exists a
conformal window at small coupling.
In this Letter, we confirm and study the conformal

invariance in a weakly interacting 2D Fermi gas. We focus
on mesoscopic systems with a small particle number, which
are in the quasi-2D regime, and describe the gas to leading
linear order in the interaction strength g by means of
(degenerate) perturbation theory. At this order, scale
invariance is exact, with logarithmic corrections only
entering at higher order: Indeed, experimental signatures
of scale invariance breaking—such as a shift in the breath-
ing mode frequency [19], logarithmic corrections to the rf
spectrum [40], or a finite bulk viscosity [41–43]—only start
at second order in the interaction parameter gðκÞ. Moreover,
on a formal level, the quantum anomaly is manifest in the
commutator between D and H, which reads ½D;H� ¼
2iH þ iI=2π [19]. The operator I violating scale invari-
ance is the Tan contact that parametrizes universal short-
range correlations [44–47], and its expectation value, too,
starts at second order [22,48–50]. In addition, although
corrections to scale invariance at higher orders are expected
in principle, they can be quite small [51], and we expect the
conformal window to extend beyond the range of validity
of first order perturbation theory. To the best of our
knowledge, this provides the only setup where the non-
relativistic conformal symmetry can be verified exactly by
elementary means in an interacting quantum system.
Moreover, the results presented here should be observable
in current experiments on interacting few-body 2D Fermi
systems [52–56].
We begin with the Hamiltonian (2) in occupation-

number representation

Hω ¼
X
j;σ

ϵjc
†
jσcjσ þ g

X
ijkl

wijklc
†
i↑c

†
j↓ck↓cl↑: ð3Þ

Here, c†jσ creates a fermion with spin projection σ ¼↑;↓
in a single-particle state j ¼ fnj; mjg with energy
ϵj ¼ 2nj þ jmjj þ 1, where nj is the radial quantum
number and mj the angular momentum projection.
Moreover, wijkl ¼

R
d2rϕ�

iϕ
�
jϕkϕl is the overlap integral

of harmonic oscillator wave functions, ϕjðz; z̄Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nj!=πðnj þ jmjjÞ!

p
zmje−z̄z=2L

jmjj
nj ðz̄zÞ, where Ljmj

n is the
associated Laguerre polynomial and we use complex
particle positions z ¼ xþ iy. Single-particle states with
energy lþ 1 are lþ 1-fold degenerate with angular
momentum m ¼ −l;−lþ 2;…;l. Throughout the
Letter, we consider N-particle configurations with an equal
number of both spin types for even N, and one excess spin
for odd N. Without interactions, the ground state is
obtained by successively populating the lowest single-
particle levels with particles of both spins. Unless there
is a “magic” number of particles, for which all states at a
given energy are all either fully occupied or empty (this is
the case for N ¼ 2; 6; 12; 20; 30; 42;…), the ground state is
degenerate. So are all excited-state configurations, which
have integer excitation energies and are obtained by
populating higher single-particle levels. This degeneracy
is lifted when interactions are taken into account. To
leading order in degenerate perturbation theory, we collect
all states fjΨmig with equal noninteracting energy, and
diagonalize the Hamiltonian matrix [57,58],

Hmn ¼ hΨmjHωjΨni; ð4Þ

which gives the energy eigenvalues

EN ¼ Eð0Þ
N þ Eð1Þ

N ; ð5Þ

with Eð0Þ
N the noninteracting energy and Eð1Þ

N ∼OðgÞ the
interaction energy. We also determine the angular momen-
tum projectionM and the total spin eigenvalue SðSþ 1Þ for
each state. Note that scale invariance at leading order in
perturbation theory follows directly from the homogeneity
of the delta potential in the matrix element (4). The second-
order correction to the energy, by contrast, includes a
divergent summation over internal states [57,58], leading to
a cutoff dependence that violates scale symmetry.
We obtain a simple analytical result for the ground state

energy,

Eð1Þ
gs;N ¼ g

4π
Eð0Þ
gs;N −

g
2π

Sgs;N; ð6Þ

where Sgs;N is the total spin of the ground state, which is
determined by the particles in the valence shell. The first
term describes a mean-field shift, where the energy of
occupied levels is changed by a factor ð1þ g=4πÞ. The
beyond-mean-field contribution in the second term is
shown in Fig. 1. For repulsive interactions [Fig. 1(a)],
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the ground state has maximal total spin, corresponding to
the largest possible number of unpaired fermions in the
valence shell (the total spin is extremal for half-filled shells,
N ¼ 4; 9; 16; 25; 36; 49;…). This is an example of Hund’s
rule [59]. By contrast, for attractive interactions [Fig. 1(b)],
the total spin of an even-parity configuration is zero, S ¼ 0,
while for an odd-parity configuration, it is S ¼ 1=2. This is
known as the parity effect [60,61], where odd-parity states
have an excess energy compared to their even-parity
neighbors. The inset of Fig. 1 compares the result (6)
(blue lines) with numerical exact-diagonalization calcula-
tions (red crosses) for jgj ¼ 0.3 [62], which are in good
agreement, indicating that perturbation theory is valid at
these interactions.
To discuss the excited state spectrum in a 2D harmonic

trap, we introduce two spectrum-generating operators Q†
�

in addition to the operator L† that generates the breathing
mode. They create center-of-mass (c.m.) excitations and are
defined as

Q†
þ ¼

X
iσ

�
−i

ffiffiffi
2

p ∂
∂z̄iσ þ i

1ffiffiffi
2

p ziσ

�
; ð7Þ

Q†
− ¼

X
iσ

�
−i

ffiffiffi
2

p ∂
∂ziσ þ i

1ffiffiffi
2

p z̄iσ

�
: ð8Þ

They obey the nonzero commutation relations ½Q�; Q
†
�� ¼

2N and ½H;Q†
�� ¼ Q†

�, which are independent of the
interaction potential and thus hold irrespective of scale
invariance. Acting with Q†

� on an eigenstate with energy E
and angular momentum M creates a state with Eþ 1 and
M � 1. In general, however, breathing mode and c.m.
excitations are not independent, which follows from the
nonzero commutators ½L†; Q�� ¼ −2Q†∓ and ½L;Q†

�� ¼
2Q∓. This is also apparent in an occupation-number
representation, where Q†

� are single-particle operators that
transfer occupied states with energy l and angular momen-
tum ml to empty levels with lþ 1 and ml � 1. To leading
order in perturbation theory, L† is also a single-particle
operator that creates single-particle excitations by two

without a change in angular momentum. States generated
by L† and Q†

þQ†
− thus have finite overlap. In order to

disentangle breathing modes and c.m. excitations, follow-
ing [3,13,63] we introduce the operator

R† ¼ L† −
1

2N
ðQ†

þQ†
− þQ†

−Q
†
þÞ; ð9Þ

which commutes with Q†
� since it only acts on an internal

hyperradius R̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iσ jriσ −Cj2
p

, with C the c.m. posi-
tion. R† thus generates internal breathing modes, again
with excitation energy two (which follows from ½H;R†� ¼
þ2R†). Repeated c.m. and breathing mode excitations then
give the orthogonal set of excited states

ja; b; ciP ¼ ðR†ÞaðQ†
þÞbðQ†

−ÞcjPi; ð10Þ
where the so-called primary state jPi that forms the ground
step is annihilated by R, Qþ, and Q−. This is illustrated in
Fig. 2. Denoting the energy and angular momentum of jPi
by Eg and Mg, the excited state has energy Ea;b;c ¼ Eg þ
ð2aþ bþ cÞ (with internal energy Eint ¼ Eg þ 2a − 1 and
c.m. energy Ec.m. ¼ bþ cþ 1) and angular momentum
Ma;b;c ¼ Mg þ ðb − cÞ. The total spin is conserved. Note
that there is an infinite number of primary states, and
primary and nonprimary states form a complete set of the
Hilbert space. States within different conformal towers are
disentangled by computing the expectation value of the
Casimir operator

T ¼ 4ðT2
3 − T2

1 − T2
2Þ; ð11Þ

which is formed from the operators

T1 ¼
1

4
ðR† þ RÞ; T2 ¼

1

4i
ðR† − RÞ;

T3 ¼
1

2
H −

1

4N
ðQþQ

†
þ þQ†

−Q−Þ; ð12Þ

FIG. 1. Beyond-mean-field contribution to the ground state
energy in a harmonic trap as a function of particle number for
(a) repulsive and (b) attractive interactions. Inset: comparison
with exact diagonalization results for jgj ¼ 0.3 (red crosses, data
from Ref. [62]). FIG. 2. Conformal tower of states created from a primary state

jPi, ordered by energy and angular momentum. Nonprimary
states are c.m. excitations, which are created by the operators Q†

�
(blue arrows) that increase the energy by ℏω and the angular
momentum by �1, and internal breathing mode excitations,
which are created by R† (orange arrows) which increases the
internal energy by 2ℏωwithout changing the angular momentum.
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that obey the nonrelativistic conformal SO(2,1) symmetry
algebra ½T1; T2� ¼ −iT3; ½T2; T3� ¼ iT1, and ½T3; T1� ¼
iT2. The Casimir commutes with all symmetry operators
and is thus constant within each conformal tower.
Evaluated for a primary state, we have hPjTjPi ¼
ðEð0Þ

g − 1ÞðEð0Þ
g − 3Þ, where at this order in perturbation

theory Eð0Þ
g denotes the noninteracting contribution to the

ground step energy of a conformal tower.
Figure 3 shows the results for the excitation energies as

obtained from degenerate perturbation theory for four
particle numbers N ¼ 2, 6, 9, and 12, grouped by angular
momentum. Here,N ¼ 2, 6, and 12 are the first three magic
numbers, and N ¼ 9 has a half-filled valence orbital in the
ground state. We choose an attractive interaction with
strength g ¼ −1, such that the lifting of the degeneracy
of noninteracting states is clearly visible, yet states remain
clustered around their noninteracting excitation energies.
We identify primary states and the degree of excitation of
nonprimary states by computing the first integers ða; b; cÞ
for which an eigenstate is in the kernel of Raþ1, Qbþ1

þ , and
Qcþ1

− . In Fig. 3, we indicate primary states in blue and
nonprimary states in red, where for clarity we do not
differentiate different conformal towers [64]. Remaining
degenerate states are offset horizontally. Note that while
the structure of nonprimary states is entirely dictated by
the nonrelativistic conformal symmetry [cf. Fig. 2], the
positions of primary states follow from our numerical

calculations. In all our calculations, we verified the spec-
trum as predicted by the conformal symmetry. For a direct
visual inspection, the spectrum is most apparent for N ¼ 2,
Fig. 3(a). Note that for N ¼ 6 and 12, the excitation
energies of several primary states at the second level are
reduced compared to the noninteracting value 2 [inset and
shaded areas in Figs. 3(b) and 3(d)]. These states contain
two excitations from the ground state by one energy level,
and the reduction in energy is caused by attractive inter-
actions within the excited shell. The excitation energy of
such states was studied experimentally [54] and also
using exact diagonalization [65], and our results for the
lowest interaction shift ΔE6 ¼ −0.077jgj ¼ −0.484EB and

ΔE12 ¼ −0.097jgj ¼ −0.608EB, where EB ¼ jEð0Þ
gs;N¼2j ¼

jgj=2π is the two-body bound state energy [cf. Eq. (6)], are
in agreement. For ground states with partially filled shells
(such as N ¼ 9), a negative shift of the excitation energy
exists already at the first level [cf. Fig. 3(c)].
As discussed in the introduction, the microscopic origin

of the nonrelativistic conformal symmetry is a factorization
of the many-body wave function [3,13]

Ψðr1↑;…; r1↓;…Þ ¼ Ψc:m.ðCÞ
FðR̃Þ
R̃N−2 ϕðnÞ; ð13Þ

where Ψc:m:ðCÞ is the c.m. part (which factorizes for
any Galilean-invariant interaction), FðR̃Þ the internal

FIG. 3. Excitations energies for N ¼ 2, 6, 9, and 12 particles in a harmonic trap ordered by angular momentum for an attractive
interaction g ¼ −1. Blue points represent primary states and red points are nonprimary states (cf. Fig. 2). Overlapping points are moved
horizontally for clarity. Insets: Magnified spectrum near the second excitation level.
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hyperradial part, and ϕðnÞ a hyperangular part that depends
on the remaining internal coordinates n ¼ ðr1↑ −C;…;
r1↓ −C;…Þ=R̃. For a state ja; b; ciP, FðR̃Þ is determined
by the identity ðRÞaþ1ja; b; ciP ¼ 0:

FðR̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a!
Γðsþ aþ 1Þ

s
R̃se−R̃

2=2Ls
aðR̃2Þ; ð14Þ

where Γ is the Gamma function, Ls
a is an associated

Laguerre polynomial, and s parametrizes the energy of

the primary state as Eð0Þ
g ¼ sþ 1 [64]. Note that the internal

hyperradial wavefunction only depends on the primary

state energy Eð0Þ
g and the number of internal breathing mode

excitations a with exited states having multiple nodes. It
does not depend on the angular momentum M or the
number of c.m. excitations b and c, which do not affect the
internal dynamics. An observable consequence of the
separability is that R̃F2ðR̃Þ describes the distribution of
the internal hyperradius R̃ [3,66]. We confirm this result
using Metropolis Monte Carlo sampling of the perturbative
wave function jΨa;b;cðr1↑;…; r1↓;…Þj2. Figure 4 shows
the hyperradial distribution for the lowest 77 states of N ¼
6 particles (corresponding to the first two excitation levels),
where points are numerical results and continues lines are
the analytical prediction (14). The inset in Fig. 4 shows the
same spectrum as Fig. 3(b) with a revised color coding that
matches the distribution function. As is apparent from the
figure, states with an equal number of internal breathing
mode excitations a that are derived from primary states at
the same excitation level (i.e., with equal s) share the same
hyperradial distribution. The hyperradial distribution
should be observable experimentally by sampling the
many-body wave function using recently developed
single-atom imaging techniques [55,56], thus verifying
the conformal symmetry on a microscopy level, with

deviations from our predictions (for example, at stronger
interactions or for deformed or rotating traps) a signature of
anomalous or explicit symmetry breaking. More broadly,
the mesoscopic 2D Fermi gas constitutes an experimentally
relevant toy model in which the conformal symmetry can
be studied exactly using elementary techniques. In par-
ticular, this provides a new way to study conformal non-
equilibrium dynamics [26,67–72].
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