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The quantum null energy condition (QNEC) is a lower bound on the energy-momentum tensor in terms of
the variation of the entanglement entropy of a subregion along a null direction. To gain insights into quantum
thermodynamics of many-body systems, we study if the QNEC restricts irreversible entropy production in
quenches driven by energy-momentum inflow from an infinite memoryless bath in two-dimensional
holographic theories. We find that an increase in both entropy and temperature, as implied by the Clausius
inequality of classical thermodynamics, is necessary but not sufficient to not violate QNEC in quenches
leading to transitions between thermal states with momentums that are dual to Banados-Teitelboim-Zanelli
geometries. For an arbitrary initial state, we can determine the lower and upper bounds on the increase of
entropy (temperature) for a fixed increase in temperature (entropy). Our results provide explicit instances of
quantum lower and upper bounds on irreversible entropy production whose existence has been established in
literature. We also find monotonic behavior of the nonsaturation of the QNEC with time after a quench, and
analytically determine their asymptotic values. Our study shows that the entanglement entropy of an interval
of length l always thermalizes in time l=2with an exponent 3=2. Furthermore, we determine the coefficient of
initial quadratic growth of entanglement analytically for any l, and show that the slope of the asymptotic
ballistic growth of entanglement for a semi-infinite interval is twice the difference of the entropy densities of
the final and initial states. We determine explicit upper and lower bounds on these rates of growth of
entanglement.
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Quantum thermodynamics has established various
instances where thermodynamics can be generalized even
to finite-dimensional quantum systems interacting with a
bath by accounting for entanglement and measures of
accessible quantum information [1–7]. For instance, it has
been shown that the one-shot work cost of creating a state
and the extractable work from it are bounded by the
hypothesis-testing relative entropy between the state and
the thermal equilibrium [3]. This discipline has found
applications in understanding (bio-)chemical reactions,
and also in the study of quantum engines.
Although limited progress has been achieved in the

applications of quantum thermodynamics to many-body
systems, there have been independent developments of
interest. One such example is the formulation of the
quantum null energy condition (QNEC) [8], which sets
lower bounds on the expectation value of null components
of the energy-momentum tensor in terms of null variations

of the entanglement entropy of subregions whose boun-
dary contains the point of observation. QNEC has been
proven for free quantum field theories (QFTs) [9,10], holo-
graphic QFTs [11], two-dimensional (2D) conformal field
theories (CFTs) [12], and also for general Poincaré-invariant
QFTs using half-sided modular inclusion properties of
operator algebras [13]. In a 2D CFT with central charge
c, the strictest form of QNEC is [11,12,14]

Q� ≡ 2πht��i − S00ent −
6

c
S02ent ≥ 0; ð1Þ

where t�� are the two nonvanishing null components of the
energy-momentum tensor, and the derivatives are obtained
from infinitesimal variations of the entanglement entropy
Sent of any interval ending at the point of observation under
shifts along theþ (right) and− (left) pointing null directions,
respectively. Recently it has been pointed out that QNEC can
follow from positivity conditions on variations of the relative
entropy under null shape deformations [15–17] (see also
Ref. [13]) and such positivity conditions also hold for
sandwiched Renyi divergences. A pertinent question is
therefore, whether QNEC and its possible generalizations
impose criteria that go beyond classical thermodynamics,
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such as quantum generalizations of the Clausius inequality
discussed in the literature [18–23].
When any system with finite energy interacts with a

memoryless infinitely large energy bath, its entropy can only
increase monotonically. In holographic QFTs, this feature is
reproduced via the monotonic growth of the area of the
apparent and event horizons, and eventual thermalization
following a quench [24–27].
In this Letter, we consider fast quenches that lead to

transitions between thermal states carrying momentum in 2D
holographic systems, and establish that the QNEC implies
more than the mere rise of both the temperature and the
thermodynamic entropy. For a fixed increase in the entropy
(temperature), the increase in temperature (entropy) has to be
bounded from both above and below so that the QNEC is
unviolated after quench. Our results thus provide explicit
instances of the upper and lower bounds on irreversible
entropy production in quantum many-body systems whose
existence has been established using tools of quantum
information theory [18–23]. Furthermore, we extend pre-
vious results [28–36] on the growth and thermalization of
entanglement entropy in 2D CFTs, and establish bounds on
the rates of growth of entanglement that can be validated in
numerical simulations and experiments.
Our holographic results apply when the central charge c

of the CFT is large and it has a sparse spectrum (implying
strong coupling). Nevertheless, we argue that our results
are relevant for understanding entropy production from
quenches faster than any microscopic timescale in a
generic many-body system.
Holographic quenches.—A two-dimensional strongly

coupled holographic CFT with a large central charge can
be described by a three-dimensional Einstein gravity coupled
to a few fields and with a negative cosmological constant
[37]. The central charge of the dual CFT is c ¼ 3L=ð2GÞ
[38–40], whereG is Newton’s gravitational constant andL is
related to the cosmological constant Λ via Λ ¼ −1=L2. Any
(time-dependent) state in the CFT corresponds to a regular
solution of the gravitational theory.
Quenches leading to fast transitions between thermal

states at time t ¼ 0 can be described by dual metrics of the
form (see also Ref. [41])

ds2 ¼ 2drdt −
�
r2

L2
− 2mðtÞL2

�
dt2 þ 2jðtÞL2dtdx

þ r2

L2
dx2; ð2Þ

with

mðtÞ ¼ θð−tÞðμi2þ þ μi2− Þ þ θðtÞðμf2þ þ μf2− Þ; ð3Þ

jðtÞ ¼ θð−tÞðμi2þ − μi2− Þ þ θðtÞðμf2þ − μf2− Þ; ð4Þ

where μi;f� are related to the temperature (Ti;f) and entropy
density (si;f) of the initial and final thermal states
respectively. Explicitly,

Ti;f ¼ 2

π

μi;fþ μi;f−

μi;fþ þ μi;f−
; si;f ¼ c

6
ðμi;fþ þ μi;f− Þ: ð5Þ

These can be obtained from the thermodynamics of the
Banados-Teitelboim-Zanelli (BTZ) black branes [42,43]
dual to the initial and final states. The coordinates t and x
are shared by the dual field theory that lives at the
boundary r ¼ ∞ of the emergent radial direction. This
geometry is supported by a bulk stress tensor TMN that is
traceless and locally conserved in the metric [Eq. (2)] with
nonvanishing components

Ttt ¼
qðtÞL2

r
þ pðtÞjðtÞL6

r3
; Ttx ¼

pðtÞL2

r
; ð6Þ

where

8πGqðtÞ ¼ δðtÞðμf2þ − μi2þ þ μf2− − μi2− Þ;
8πGpðtÞ ¼ δðtÞðμf2þ − μi2þ − μf2− þ μi2− Þ: ð7Þ

We find that the QNEC inequalities [Eq. (1)] imply that
the bulk matter satisfies the classical null energy
condition.
Holographic renormalization [39,40] of the on-shell

gravitational action for the metric [Eq. (2)] provides the
expectation value of the energy-momentum tensor of the
dual state (living in flat Minkowski metric):

ht��i ¼
c

12π
ðθð−tÞμi2� þ θðtÞμf2� Þ; htþ−i ¼ 0: ð8Þ

The vanishing of htþ−i implies tracelessness. Gravitational
constraints [Eq. (7)] also imply the Ward identity
∂μhtμνi ¼ fν, where fν ¼ L½qðt; xÞ; pðt; xÞ� is the energy-
momentum injection from the infinite bath into the CFT.
Finally, we note that we have been agnostic about the

matter content of the bulk theory while describing the dual
geometries. The explicit form [Eq. (7)] of the bulk energy-
momentum tensor, which is localized on the ingoing null
shell, is simply necessitated by the Israel junction conditions.
Our results therefore do not depend on the specific details of
the dual CFTs.
For our analytic computations, we use the result that the

geometry [Eq. (2)] describing a fast transition between two
BTZ black branes at t ¼ 0 can be uniformized, i.e., con-
verted to the Poincaré patch metric [withmðtÞ ¼ jðtÞ ¼ 0 in
Eq. (2)], corresponding to the vacuum, with two separate
diffeomorphisms for t < 0 and t > 0 (see the Supplemental
Material [44] for details). These uniformization maps result
in two Poincaré patches bounded by the hypersurfaces
[Σi;fðx; rÞ] that are the respective images of the hypersurface

PHYSICAL REVIEW LETTERS 128, 191602 (2022)

191602-2



t ¼ 0. These hypersurfaces are glued by identifying the
points on each with the same values of the physical
coordinates x and r. See Fig. 1 for an illustration.
Entanglement growth.—The entanglement entropy of a

spacelike interval with end points p1 ¼ ðx1; t1Þ and p2 ¼
ðx2; t2Þ in any arbitrary state of the holographic CFT can be
obtained from the proper length Lgeo of the geodesic in the
dual bulk geometry that is anchored to the points p1 and p2

at the regulated boundary r ¼ L2=ϵ, and is given by Sent ¼
ðc=6ÞðLgeo=LÞ [48,49]. Here, ϵ−1 is interpreted as an
ultraviolet energy cutoff in the dual theory. Since the
geodesic length can be readily computed in the Poincaré
patch metric given just the endpoints [50], we can compute
the entanglement entropy of a spatial interval of length l in
any BTZ state employing the uniformization map. A simple
computation yields

Sent ¼
c
6
ln

�
sinhðμþlÞ sinhðμ−lÞ

μþμ−l2

�
þ c
3
ln

�
l
ϵ

�
; ð9Þ

where the last term is the well-known vacuum
contribution that depends on the ultraviolet regulator
(see Refs. [28,51,52]).
Via the cut and glue method we can readily compute the

evolution of entanglement entropy for intervals at the
boundary of geometries describing fast quenches between
two BTZ spacetimes. Before the quench, the geodesic is
located entirely in a single Poincaré patch described by the
uniformization map for t < 0. After the quench, the geodesic
anchored to the boundary (at points p1;2 in Fig. 1) of the final
Poincaré patch goes back in time and intersects the gluing
hypersurface Σf, at two points (q1;2 in Fig. 1) until a limiting
timewhere the two intersection points merge, after which the
entanglement entropy for the chosen interval thermalizes.

The hypersurface Σf thus cuts the geodesic into three arcs,
two of which (labeled I and III in Fig. 1) are in the final
Poincaré patch and join p1;2 to q1;2 on Σf, and a third arc
(labeled II in Fig. 1) joins q1;2 on Σi in the initial Poincaré
patch. The length of each of the three geodetic arcs can be
computed by the Poincaré patch distance formula since the
endpoints are known explicitly. Variations of the entangle-
ment entropy under null deformations of any of the
endpoints can similarly be computed. For more details,
see the Supplemental Material [44].
Our explicit computations confirm that the entanglement

entropy has three stages of evolution [31–33] for a
transition between two BTZ spacetimes. In the first stage,
the entanglement entropy of an interval of length l grows
quadratically from its prequench values as ∼Dst2 with

Ds ¼
c
6
fΔmþ 2½μfþ cothðμfþlÞ − μiþ cothðμiþlÞ�

× ½μf− cothðμf−lÞ − μi− cothðμi−lÞ�g; ð10Þ

where Δm ¼ μf2þ þ μf2− − μi2þ − μi2− . The above reproduces
the known result for the vacuum to thermal nonrotating BTZ
transition [31,33]. This initial quadratic growth has also been
observed in quantum lattice systems [53,54]. In the inter-
mediate regime, the entanglement grows quasilinearly. For a
semi-infinite interval, the asymptotic growth is exactly
linear, i.e., Sent ¼ vst with

vs ¼ 2ðsf − siÞ; ð11Þ

where si;f are the initial (final) entropy densities given by
Eq. (5). This is consistent with the “tsunami hypothesis”
[32,36] (see also Refs. [55–57]) that the entanglement
spreads with a tsunami velocity, which is the speed of light
in 2D CFTs [30,36], from both ends of the interval so that
subintervals of total length 2t should become completely
entangled with the rest of the quenched system. If an interval
of large length can be approximated by a thermal density
matrix (see Refs. [30,58–60]), then the result [Eq. (11)]
follows because the change in the entanglement at late time
should be the product of the length 2t times the difference in
the thermodynamic entropy densities between final and
initial states (see Refs. [61,62] for other contexts). This
light-cone-like spreading of entanglement has been observed
analytically in CFTs using replica methods [29], numerically
in quantum lattice systems [63–67], and experimentally in
ultracold atomic gases [68,69] and ion traps [70–72]. Our
general result [Eq. (11)] can thus be validated both numeri-
cally and experimentally.
We are also able to prove that the entanglement entropy

SentðtÞ for any interval of length l saturates sharply to the
thermal value Sth at the so-called “horizon time” t ¼ l=2 and
also seen in lattice simulations as Sth − SentðtÞ ∼ ðl=2 − tÞ3=2
as t → l=2 for arbitrary fast quenches. This readily follows
from the analytic result that the final intersection point

FIG. 1. Schematic representation of the cut and glue method—
the left and right halves represent the separate Poincaré patches to
which the prequench and postquench spacetimes map to. The
gluing hypersurfaces Σi;f are the images of t ¼ 0 in the respective
geometries. Points on Σi;f carrying the same physical coordinate
labels x and r are identified. The geodesic ending at the boundary
is cut into three arcs.
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between Σf and the geodesic glued to the endpoints of the
interval 0 ≤ x ≤ l at the boundary in the postquench
geometry occurs at t ¼ l=2, and is given by the point on
Σf parametrized by

r� ¼ L2½μfþ cothðμfþlÞ þ μf− cothðμf−lÞ�; x� ¼ l=2: ð12Þ

The horizon time and the saturation exponent 3=2 were
found earlier in holographic systems only for the transition
from the vacuum to a nonrotating thermal state [31–33].
However, this feature can be shown to be valid analytically
for a class of quenches in generic 2D CFTs [29,30,36]
and is also seen in experiments [68]. It will be interesting to
also reproduce our general results from tensor network
approaches building on [73].
The QNEC criterion.—It can be readily seen that the

momentum carrying thermal states dual to BTZ geometries
saturate the QNEC inequalities [Eq. (1)] for any length l of
the entangling interval [74]. Therefore, these inequalities
should be saturated before the quench. However, after the
quench time (t ¼ 0), we find that the QNEC inequalities
[Eq. (1)] can be violated.
We find that the QNEC inequalities [Eq. (1)] imply the

strictest bounds when applied for the semi-infinite interval
(see the Supplemental Material [44] for dependence
of Q�ðtÞ on the length l of the entangling interval).
Translation symmetry further implies that it is sufficient
to consider intervals x ≥ 0 with Qþ (Q−) involving null
variations of the endpoint at the spatial origin towards right
(left), respectively. Applying the cut and glue method for
the semi-infinite interval, we see that demanding Q� ≥ 0 at
t ¼ 0 implies [with Δ ¼ 2ðμfþ − μiþÞð2μfþ þ μiþÞ]:
1

3
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δþ 3μi−ð3μi− þ 2μiþ − 2μfþÞ

q
þ μfþ − μiþÞ

≤ μf− ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δþ μi−ðμi− þ 2μfþ − 2μiþÞ

q
− μfþ þ μiþ: ð13Þ

For the initial vacuum state (μi� ¼ 0), the above inequalities
simply impose that μfþ ¼ μf−, i.e., the final state should have
zero momentum. One can analytically show that for the latter
case Q� ¼ 0 for all time in the case of the semi-infinite
interval (see the Supplemental Material [44]). It is quite
interesting that although the thermalization of the entangle-
ment occurs at the tsunami speed (of light), QNEC saturation
persists throughout the quench.
When the initial state is not the vacuum, the inequality

[Eq. (13)] implies that μf� ≥ μi�, and therefore Tf > Ti and
sf > si, i.e., both the temperature and thermodynamic
entropy density must not decrease after quench. However,
as stated before, we get more. As for instance, with μiþ ¼ 1,
μi− ¼ 0.75 the final states satisfying Eq. (13) lie within the
region bounded by the black bold lines shown at the left in
Fig. 2, implying stricter bounds than classical thermody-
namics. When the upper (lower) end of the inequality

[Eq. (13)] is satisfied, Qþ (Q−) vanishes at t ¼ 0 for the
semi-infinite interval. For t > 0, althoughQþ > 0 is always
satisfied when Eq. (13) holds, Q− ≥ 0 is violated for t > tc
(with tc depending on initial and final states), thus pushing
above the lower bound on μf− set by Eq. (13), depicted by the
upper boundaries of the dotted regions in Fig. 2 (see the
Supplemental Material [44] for more details). The final
allowed region, shown in white in Fig. 2, implies lower and
upper bounds on the increase in entropy density (temper-
ature) for a fixed increase in temperature (entropy density).
The corresponding plot of allowed final states for the initial
state μi� ¼ 1 shown in the Supplemental Material [44] also
illustrates these bounds.
Furthermore, we find that, as t → ∞,

Q−→ 0; Qþ→ ðsf− siÞðμfþ−μf−þμiþþμi−Þ> 0 ð14Þ

for the semi-infinite interval. Interestingly, for allowed
transitions, QþðtÞ and Q−ðtÞ for the semi-infinite interval
are also monotonically increasing and decreasing func-
tions, respectively, after quench. Its implications for the
relative entropy of the quenched state should be understood
following [16,75] (see also Refs. [15,17]).
The bounds shown in Fig. 2 can be understood in terms

of irreversible entropy production. For any process the
total change in entropy can be decomposed as ΔS ¼
ΔSirr þ ΔSrev, where ΔSrev is the entropy change due to
reversible heat exchangewith a bath. The Clausius inequality
implies thatΔSirr ≥ 0. This has been generalized in quantum
thermodynamics. Reference [18] provides a lower bound on
ΔSirr in terms of the Bures distance between the out-of-
equilibrium state and the final equilibrium state, and an
upper bound related to the Bremermann-Bekenstein bound
[76]. These bounds can be equivalently stated in terms of the
average irreversible work [19–21]. Bounds on ΔSirr have

FIG. 2. Left: The possible relative changes ½ðμf� − μi�Þ=μi�� for
μiþ ¼ 1, μi− ¼ 0.75 are shown in white. The black lines are given
by the inequality [Eq. (13)] required by Q� ≥ 0 at t ¼ 0 and
the gray dotted region is disallowed by examining Q− for t > 0.
The contours show that for a fixed change in temperature (red), the
change in entropy is bounded from above and below (yellow and
blue). Right: The same allowed region (in white) is shown in terms
of the relative change in temperature and entropy density.
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also been seen for an open quantum system coupled to a
thermal bath [19,22,23]. However, such bounds depend on
the choice of a distance measure on the space of states, and it
is not clear which one places the tightest bound. The fast
quenches considered here do not involve any reversible heat
exchange, implying ΔS ¼ ΔSirr. Our results provide an
explicit computation of lower and upper bounds on ΔSirr
for a fixed change in temperature in a strongly interacting
many-body system.
The upper and lower bounds on Δs, the increase in

entropy density, for a fixed final temperature and a given
initial state, readily bound the speed of the asymptotic
ballistic entanglement growth [Eq. (11)] for the semi-infinite
interval from both above and below. Furthermore, the
coefficient of the initial quadratic growth [Eq. (10)] is
similarly bounded from above and below for any l, and
both of these bounds increase monotonically with l (see the
Supplemental Material [44] for plots).
Our results should be valid when the timescale of the

quench is smaller than any other scale in the system, and
the final and initial temperature scales are both smaller than
the microscopic energy scale below which the CFT provides
a good description [36,77]. Since the strongest bounds on
irreversible entropy production and entanglement growth
correspond to the semi-infinite interval, our results are
insensitive to the microscopic details. Our bounds can thus
be verified qualitatively from growth of entanglement by
studying fast quenches, e.g., in spin-1

2
XX and XXZ chains

numerically [53,54], and experimentally in ultracold atomic
gases [68,69] and in ion traps [70–72]. Going beyond the
requirements c ≫ 1 and a sparse spectrum would require
investigating higher derivative and quantum corrections in
the gravitational description.
Discussion.—Our result establishing lower and upper

bounds on irreversible entropy production in holographic
CFTs after quenches via the application of QNEC offers a
novel perspective on the quantum thermodynamics of
many-body systems.
As detailed in the Supplemental Material [44], our

methods allow study of fast quenches between arbitrary
quantum equilibrium states [74] that saturate the QNEC
inequalities [Eq. (1)]. These states can be essentially
described as Virasoro hair on top of vacuum and thermal
states, and are dual to Banados geometries [78]. Following
our methods, an erasure protocol for quantum information
encoded in Virasoro hair has been implemented [79]. The
QNEC inequalities reproduce the Landauer principle [80–
82] and also demonstrate that certain types of encoding
are tolerant against erasures faster than any microscopic
timescale [79]. A more general study of transitions
between quantum equilibrium states should lead to novel
consequences for various quantum channels.
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