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We show that macroscopic thermalization and transport impose constraints on matrix elements entering
the eigenstate thermalization hypothesis (ETH) ansatz and require them to be correlated. It is often assumed
that the ETH reduces to random matrix theory (RMT) below the Thouless energy scale. We show that this
conventional picture is not self-consistent. We prove that the energy scale at which the RMT behavior
emerges has to be parametrically smaller than the inverse timescale of the slowest thermalization mode
coupled to the operator of interest. We argue that the timescale marking the onset of the RMT behavior is
the same timescale at which the hydrodynamic description of transport breaks down.
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Thermalization of isolated quantum systems has
attracted significant attention recently. For quantum ergodic
systems without local integrals of motion, it is currently
accepted that thermalization can be explained with the help
of the eigenstate thermalization hypothesis (ETH) [1–8]. At
the technical level, the ETH can be understood as an ansatz
for the matrix elements of observables in the energy
eigenbasis [5]:

Aij ¼ AethðEÞδij þ Ω−1=2ðEÞfðE;ωÞrij;
E ¼ ðEi þ EjÞ=2; ω ¼ Ei − Ej: ð1Þ

Here, A is an observable satisfying ETH (1), ΩðEÞdE is the
density of states, Aeth and f are smooth functions of their
arguments, and rij are pseudorandom fluctuations with unit
variance. The diagonal part of the ETH ansatz explains
thermalization, at least in the sense that the expectation
value of A in some initial state with mean energy E, after
averaging over time, is equal to the thermal expectation
value of A at the effective temperature β−1ðEÞ ¼
d lnΩ=dE. The dynamics of thermalization is encoded
in the off-diagonal matrix elements rij, as well as in the
initial state Ψ, and is not universal. In this Letter, we show
that macroscopic thermalization, in particular, the type of
transport present in the system, imposes constraints on the
correlations of rij.
Numerical studies confirm that the rij behave “ran-

domly” and oscillate around zero mean seemingly without
any obvious pattern. Certainly, the rij cannot be random in
the literal sense, as the form of Aij is fixed once the
Hamiltonian and A are specified. Moreover, A often has to
satisfy various algebraic relations. For example, in a spin
lattice model, one can choose A to be a Pauli matrix acting
on a particular site. In this case, A2 ¼ I, which requires rij
to be correlated. Similarly, the rij can be constrained by the

expected behavior of the four-point correlation function
[9–12], etc.
While the whole matrix rij cannot be random, there is a

strong expectation that fluctuations rij can be treated as
random if the indexes i and j are restricted to belong to a
sufficiently narrow energy interval. Assuming the interval
is centered around some E, we define ΔERMT as the largest
possible interval such that all rij with

jEi − Ej; jEj − Ej ≤ ΔERMT=2 ð2Þ

can be treated for physical purposes as being random and
independent (without necessary being normally distri-
buted). The expectation that rij reduces to a Gaussian
random matrix inside a sufficiently narrow interval is
consistent with numerical studies which confirm that the
rij are normally distributed [13–15] and that the form factor
f becomes constant for ω smaller than inverse therma-
lization timescale 2π=τ, called the Thouless energy
[16–19]. [Thouless energy ΔETh is often defined as a scale
of applicability of RMT to describe statistics of the energy
spectrum. Thermalization time τ is defined as the time
when the autocorrelation function of an operator A approxi-
mately saturates to a constant. The inverse scale 2π=τ is the
size of the “plateau” of f2ðωÞ and is also called Thouless
energy in the literature. For certain systems and opera-
tors probing the slowest thermalization mode, both quan-
tities are known to coincide ΔETh ≈ 2π=τ [19–21].]
Furthermore, for real symmetric Aij, the variances of the
diagonal and off-diagonal elements have been numerically
shown to satisfy hr2iii ¼ 2hr2iji [22–24], which is consistent
with and necessary for rij to become a Gaussian orthogonal
ensemble. Random behavior of rij also naturally emerges
in the recent attempt to justify the ETH analytically [25].
From the physical point of view, the “structureless” form of
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Aij inside a small energy interval is expected on the
grounds of the hypothetical universal behavior of observ-
ables at late times [26–33].
Reduction of rij to an RMT below 2π=τ is seemingly in

agreement with the conventional picture of thermalization.
Assuming τ is the characteristic time of the slowest trans-
port mode probed by A, after the time t≳ τ the system will
be in the ergodic regime; i.e., the value of A will not be
sensitive to the initial state. This suggests rij should
become structureless for ΔERMT ∼ 2π=τ [18,19]. In this
Letter, we show this is not the case, and ΔERMT has to be
parametrically smaller than the Thouless energy 2π=τ.
The key observation is that the ETH ansatz (1) with

random mutually independent rij is constrained by the
presence of states with extensively long thermalization
times. Let us consider an initial state jΨi, which describes
an out-of-equilibrium configuration with an order one
overlap with the slowest mode probed by A. Then, at late
times

δAðt;ΨÞ ∼ e−t=τ; t≳ τ; ð3Þ

where

δAðt;ΨÞ ¼ hΨjAðtÞjΨi −
X
i

jCij2AethðEiÞ: ð4Þ

Here, the second term is simply the equilibrated value of A,
such that δA asymptotes to zero at late times. We also
assume jΨi has less than extensive energy variance ΔE.
While our argument is more general, for concreteness one
can think of a 1D spin chain of length L exhibiting diffusive
transport of energy, and A would be a local operator
coupled to energy. In this case, the initial state can be
taken to describe a quasiclassical configuration with an
extensive displacement of energy, while the timescale in
Eq. (3) would be diffusive time τ ≈ L2=D. An explicit
construction of such a state jΨi is given in Supplemental
Material [34].
To connect thermalization time τ to matrix elements of A,

we introduce a parameter-dependent average, which is
somewhat similar to the “average distance” used in
Ref. [35]:

hδAiT ≡
Z

∞

−∞
δAðt;ΨÞ sinð2πt=TÞ

πt
dt: ð5Þ

Here, T is a free parameter. When T becomes large, Eq. (5)
reduced to the conventional average over time T. After
representing AðtÞ in the energy eigenbasis using Eq. (1) and
performing the integral in Eq. (5), we find

hδAiT ¼ hΨjδAT jΨi; ð6Þ

where the operator δAT written in the energy eigenbasis has
the form

ðδATÞij¼
�Ω−1=2ðEÞfðE;ωÞrij; jEi−Ejj≤2π=T;

0; jEi−Ejj>2π=T:
ð7Þ

In other words, the matrix ðδATÞij has a band structure, and
it coincides with Aij (after subtracting the nonrandom
diagonal part) inside a diagonal band of size 2π=T and
is zero outside. This is schematically shown in Fig. 1.
The expectation value hΨjδAT jΨi can be bounded by the

largest eigenvalue of δAT , which we denote by xðTÞ:

jhΨjδAT jΨij ≤ xðTÞ: ð8Þ

Let us assume now that T is sufficiently large such that
2π=T ≤ ΔERMT. Then, ðδATÞij is a band random matrix
with independent matrix elements, and its largest eigen-

value is controlled by the variance function ðδATÞ2ij ¼
Ω−1f2ðωÞ [36]. In the limit of a narrow band TΔE ≫ 1 (see
Supplemental Material [34]),

x2ðTÞ ¼ 8

Z
2π=T

0

f2ðE;ωÞdω: ð9Þ

Technically, Eq. (9) assumes the absence of correlations,
while the definition ofΔERMT (2) does not exclude possible
correlations of rij and ri0j0 along the diagonal, i.e., when
ðEi þ EjÞ − ðE0

i þ E0
jÞ is large while jEi − Ejj and jEi0 −

Ej0 j are small. In Supplemental Material [34], we justify
Eq. (9) rigorously, using the result of Ref. [22], by
converting it into an inequality. Looking ahead, our main
result, inequality (11), continues to hold with different
numerical coefficients.
With help of Eq. (1), the integral in the right-hand-side of

Eq. (9) can be expressed through the connected autocorre-
lation function of A calculated at the effective inverse
temperature β−1 ¼ d lnΩ=dE [16,17,19]:

hAðtÞAð0Þiβ ≡ hEjAðtÞAð0ÞjEi − hEjAð0ÞjEi2: ð10Þ

FIG. 1. Visualization of the band matrix ðδATÞij (7).
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Now, combining Eq. (8) with Eq. (9) written with help of
Eq. (10), we find the inequality, which should be satisfied
so far as T ≥ TRMT ≡ 2π=ΔERMT:

jhΨjδAT jΨij2 ¼
����
Z

∞

−∞
δAðt;ΨÞ sinð2πt=TÞ

πt
dt

����
2

≤ x2ðTÞ

¼ 4

Z
∞

−∞
hAðtÞAð0Þiβ

sinð2πt=TÞ
πt

dt: ð11Þ

The inequality (11) is our main technical result, which
implies strong limitations on ΔERMT. As the characteristic
size L of the system grows, the autocorrelation function of
A approaches its thermodynamic form, which follows from
the quasiclassical hydrodynamic description:

hAðtÞAð0Þiβ ∼ ðtD=tÞα ð12Þ

with some L-independent α > 0 and tD. Coefficient α
depends on the type of transport A couples to. The behavior
(12) applies for t≳ tD and persists until t ≈ τ, after which
the autocorrelation function becomes zero [17,19]. Around
the time t ≈ τ, the value of the full autocorrelation function,
i.e., without the asymptotic value subtracted, should be
inverse proportional to the volume, indicating that the
conserved quantity coupled to A has spread across the
whole system:

�
tD
τ

�
α

∝
1

Ld : ð13Þ

Here, L is a characteristic size of the system in dimensional
units, e.g., the number of spins, while d is the number of
spatial dimensions. Using Eq. (12) and for T ≫ tD, the
right-hand side of Eq. (11) can be approximated as follows,
where we dropped all numerical coefficients:Z

∞

0

hAðtÞAð0Þiβ
sinð2πt=TÞ

πt
dt

∼
� ðtD=TÞα; τ ≳ T ≫ tD;

ðtD=τÞατ=T; T ≳ τ:
ð14Þ

For late times T ≫ tD, Eq. (14) is very small irrespective of
the value of τ=T. Strictly speaking, the estimate above is
correct only as far as α < 1 such that the integral gets its
main contribution for large t. In most cases, this
requires d ¼ 1.
The behavior of the left-hand side of Eq. (11) is quite

different. Starting from the exponential decay (3), we find,
for large T ≫ τ,

Z
∞

0

δAðt;ΨÞ sinð2πt=TÞ
πt

dt ∼
τ

T
; ð15Þ

which is in agreement with the qualitative picture that
δAðt;ΨÞ remains of the order of one for the time t ∼ τ and

then quickly approaches zero. When T is large but not
necessarily larger than τ, Eq. (15) remains of the order of
one and the inequality (11) cannot be satisfied. For Eq. (11)
to be satisfied, T has to be parametrically larger than τ:

�
τ

T

�
2 ≲

�
tD
τ

�
α τ

T
⇒ TRMT ≳ τLd: ð16Þ

In summary, we see that the inequality (11) imposes a
stringent bound on the energy scale ΔERMT ¼ 2π=TRMT,
which should be parametrically smaller than the Thouless
energy 2π=τ. In particular, for a 1D diffusive system and a
local operator A coupled to a conserved quantity, we find

TRMT ≳ τL ∼ L3: ð17Þ

More generally, for any 1D system with local interactions,
transport cannot be faster than ballistic, τ ∝ L, and, there-
fore, for any local operator, TRMT ≳ τL ∼ L2.
We illustrate the inequality (11) and the resulting differ-

ence between ΔERMT and τ−1 with the help of an open
nonintegrable 1D Ising spin chain with two polarizations of
the magnetic field. The operator A ¼ σ1x is a one-site
operator. This model is diffusive. In Supplemental
Material [34], where all technical details can be found,
we numerically justify Eq. (3) as well as Eq. (12) with
α ¼ 1=2. The result, the left-hand side and the right-hand
side of Eq. (11), is shown in Fig. 2. The inequality is
saturated for times T significantly larger than therma-
lization time τ, when the autocorrelation function plateaus
(see the inset). This confirms the conclusion that the RMT
timescale TRMT is much larger than the thermalization time.
The smallness of τ=TRMT ≪ 1 was also recently confirmed
numerically in Refs. [24,37].

FIG. 2. Plots of the lhs and the rhs of Eq. (11) in logarithmic
scale: ln jhΨjδAT jΨij2 (blue lines) and ln x2ðTÞ (orange lines).
Also shown in brown is ln δAðt;ΨÞ. Its approximately linear form
(before saturation) confirms exponential decay (3). Inset: plot
of the autocorrelation function. All plots are for a noninte-
grable Ising spin chain with L ¼ 24 spins with open bc; see
Supplemental Material [34] for details.
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For a translationally invariant system, it is also interest-
ing to consider an operator Ak with a constant momentum.
Keeping in mind a 1D diffusive spin lattice system of length
L, we denote by AðmÞ a local operator A located at the
site m. Then,

Ak ¼
21=2

L1=2

XL
m¼1

cos ðkmÞAðmÞ; ð18Þ

where L is dimensionless. The normalization factor
ð2=LÞ1=2 is chosen such that the connected autocorrelation
function is L independent in the thermodynamic limit

hAkðtÞA−kiβ ≃ e−t=τk ; τk ∝ k2=D: ð19Þ

With the same normalization, the expectation value (4) in
the state with a macroscopic amount of energy displaced
will be

δAðt;ΨÞ ∼ L1=2e−t=τk : ð20Þ

Although the t dependence in Eqs. (19) and (20) is the
same, a different L-dependent prefactor will result in a
constraint for TRMT. For large T ≫ τk, we can estimate

Z
∞

0

sinð2πt=TÞ
πt

e−t=τkdt ∼
τk
T
: ð21Þ

After ignoring unimportant numerical prefactors, Eq. (11)
yields, in agreement with Eq. (16),

TRMT ≳ τkL: ð22Þ

In conclusion, we have shown that the energy scale
ΔERMT at which the ETH ansatz reduces to random matrix
theory has to be parametrically smaller than the inverse
thermalization time, i.e., the characteristic time of the
slowest mode probed by the corresponding operator. For
a 1D system and a local operator A coupled to a diffusive
quantity, we found ΔERMT to be bounded by ðτLÞ−1 ∼ L−3,
where L is the system size and τ ≈ L2=D is the diffu-
sion time.
Our result (11) and (16) is an inequality, which raises the

question of identifying the correct scaling of ΔERMT with
the system size and understanding the significance of the
associated timescale TRMT ¼ 2π=ΔE−1

RMT from the point of
view of thermalization dynamics. We conjecture that
Eq. (16) reflects the correct scaling TRMT ∝ τLd and
propose the following interpretation. The timescale TRMT
which marks the onset of random matrix behavior for an
observable A coincides with the end of macroscopic
thermalization, i.e., applicability of the hydrodynamic
description of transport. The expectation value δAðt;ΨÞ ∼
e−t=τ will decay exponentially until it saturates into

exponentially small fluctuations of the order of e−S=2,
where S ∝ Ld is entropy. This happens around time

T ∝ τS; ð23Þ

which we conjecture to agree with TRMT up to constant
prefactors. This interpretation, and scaling, is consistent
with the onset of RMT-defined universal behavior of the
autocorrelation function at late times [38,39]. It is also
consistent with the numerics shown in Fig. 2, where by the
time the inequality (11) is satisfied the expectation value
δAðt;ΨÞ has firmly saturated into the asymptotic fluc-
tuation regime.
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