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Boson sampling is a fundamentally and practically important task that can be used to demonstrate
quantum supremacy using noisy intermediate-scale quantum devices. In this Letter, we present classical
sampling algorithms for single-photon and Gaussian input states that take advantage of a graph structure of
a linear-optical circuit. The algorithms’ complexity grows as so-called treewidth, which is closely related to
the connectivity of a given linear-optical circuit. Using the algorithms, we study approximated simulations
for local Haar-random linear-optical circuits. For equally spaced initial sources, we show that, when the
circuit depth is less than the quadratic in the lattice spacing, the efficient simulation is possible with an
exponentially small error. Notably, right after this depth, photons start to interfere each other and the
algorithms’ complexity becomes subexponential in the number of sources, implying that there is a sharp
transition of its complexity. Finally, when a circuit is sufficiently deep enough for photons to typically
propagate to all modes, the complexity becomes exponential as generic sampling algorithms. We
numerically implement a likelihood test with a recent Gaussian boson sampling experiment and show
that the treewidth-based algorithm with a limited treewidth renders a larger likelihood than the experimental
data.
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Sampling from the probability distributions of random
quantum circuits is one of the problems to demonstrate
quantum supremacy using noisy intermediate-scale quan-
tum devices [1–5]. Boson sampling (BS) is one such
sampling problem using linear-optical devices believed
to be hard to classically simulate under some plausible
assumptions [6,7]. While a scale of experimental BS grows
rapidly due to its importance [8–10], classical simulation
algorithms taking advantage of current BS experiments’
limitations are still restricted. Photon loss and distinguish-
ability of photons are representative limitations, which have
been extensively studied recently and shown to be detri-
mental to quantum advantages [11–17]. Another limitation
of current experiments is that the number of modes is not
sufficiently large to reach a collision-free BS, which may
also reduce the complexity of classical simulation [18,19].
In this Letter, we focus on limited connectivity of a

linear-optical circuit. In general, typical global Haar-ran-
dom linear-optical circuits’ input and output modes are
fully connected, which makes it hard to classically simu-
late. One possible implementation of global Haar-random
circuits is to prepare local beam-splitter arrays [20], which
corresponds to the current BS experiments’ setup.
However, a deviation from a global Haar-random unitary
is apparent in the recent experiments [8,9], because either
the circuit depth is small or appropriate ensembles of beam
splitters are not employed [21]. Hence, there is a chance
that the connectivity of the circuit is limited and that

sampling from the underlying system may not be as
difficult as from a global Haar-random circuit.
We propose classical algorithms using dynamical pro-

gramming [22,23] taking advantage of a given circuit’s
limited connectivity for single-photon BS (SPBS) and
Gaussian BS (GBS) [6,7]. Particularly, our algorithms’
complexity depends on connectivity of a relevant matrix’s
graph structure, characterized by the so-called treewidth
[24]. Since the algorithms’ complexity grows as the
treewidth instead of the system size, we may be able to
sample from some linear-optical circuits of a limited
treewidth faster than generic classical algorithms. By
applying our algorithm to local beam-splitter circuits, we
analyze how the algorithms’ complexity grows as a circuit
depth and reveal a hierarchy of the complexity depending
on the depth, namely, polynomial, subexponential, and
exponential regimes.
Boson sampling.—Consider an M-mode bosonic system

consisting of beam-splitter arrays characterized by a unitary
matrix U with N identical sources. Specifically, the unitary
matrix U represents the transformation of mode operators
fâjgMj¼1 as â

†
j → Û†â†j Û ¼ P

M
k¼1Ujkâ

†
k for a given beam-

splitter circuit Û. Let S ≡ fsigNi¼1 ⊂ ½M� be the set of input
modes for identical sources. If we measure an output state ρ̂
after beam splitters with the photon number basis
m̂ ¼ ⨂M

j¼1jmjihmjj, the probability of an outcome m ¼
ðm1;…; mMÞ is given by PðmÞ ¼ Trðρ̂ m̂Þ. For simplicity,
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we define an equivalent description of the output as
r¼ðr1;…;rNÞ, where ri’s represent modes that click.
For single-photon state input, the probability is written
as [6]

PðmÞ ¼ jPerðUS
r Þj2

m!
¼ 1

m!

����
X

σ

YN

i¼1

Uri;sσðiÞ

����
2

; ð1Þ

where the sum is over all permutations σ. Here, US
r is an

N × N matrix obtained by choosing S columns and r rows,
and PerðUÞ is the permanent of matrix U, which is related
to counting bipartite perfect matchings in the correspond-
ing graph [25]. Meanwhile, for a squeezed vacuum state
input, the probability of an outcome m is given by [7]

PðmÞ ¼ jHafðBmÞj2
m!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðV þ 1=2Þp ; ð2Þ

where Bm is a matrix obtained by repeating the ith column
and row of B≡ UDUT for mi times and HafðBmÞ is the
hafnian of matrix Bm, which is related to counting perfect
matchings in the corresponding graph [26]. Here,
D≡⨁M

j¼1 tanh rj, and V is the output state’s covariance
matrix. Squeezing parameters are given by rj ¼ r for
j ∈ S, and rj ¼ 0 otherwise.
Let us clarify the relation between graphs and BS [see

Fig. 1(a)]. To compute the (marginal) probability for an
outcome, we consider all possible paths from input photons
to the output configuration, which essentially corresponds
to interference. They can be described by all perfect
matchings of a bipartite graph ofUS

r with the input modes S
and output modes r being bipartite vertex sets and the paths
between them being edges for SPBS. For GBS, vertices of
a symmetric graph of Bm consist of an output-photon

configuration, and two vertices have an edge if the two
photons can come from the same source. To compute a
probability in this case, we consider all possible perfect
matchings of output photons, which corresponds to finding
sources from which each pair of photons come. From this
observation, when a given unitary matrix’s connectivity is
limited, we can expect that the number of possible perfect
matchings for each outcome is small so that the induced
graphs’ structure allows one to reduce the complexity.
Computing permanent and loop hafnian using dynami-

cal programming.—Before presenting sampling algo-
rithms, we first introduce classical algorithms computing
the permanent and loop hafnian of a matrix. Here, loop
hafnian is generalized hafnian, related to counting perfect
matchings including loops [27,28], which is necessary for
the sampling algorithm below. The complexity of the best-
known algorithms computing the permanent and loop
hafnian of a general N × N matrix scale as 2N and 2N=2,
respectively [29,30]. Meanwhile, there are also various
algorithms exploiting a matrix’s structures [27,31,32]. A
particularly interesting algorithm is dynamical program-
ming that computes permanent [23]. A high-level idea of
the algorithm is to construct tree decomposition of a
bipartite graph for a given matrix, which reveals the
matrix’s structure (see Fig. 1). The algorithm’s complexity
grows as so-called treewidth, which measures connectivity
by exploiting the treelike structure of the graph [22]. We
generalize the treewidth-based algorithm to loop hafnian by
using tree decompositions for a given symmetric matrix
and present the following lemma, including the result
in Ref. [23].
Lemma 1.—If the treewidth of a graph representation of

an N × N matrix is w, then dynamical programming can
compute its permanent and loop hafnian in OðNw22wÞ.
We provide the proofs of lemmas and theorems in

Ref. [33]. Notably, Lemma 1 shows that the complexity’s
exponent does not scale as the matrix size N but the
treewidth w. Therefore, for some structured matrices, the
complexity of computing their permanent or loop hafnian
can be highly reduced. For example, a forest, i.e., disjoint
union of trees, has treewidth 1 [56], so the complexity does
not grow exponentially as matrix size. On the other hand, a
complete graph, whose vertices are all connected, has the
treewidth N − 1 (N for bipartite complete graph) [56]. Note
that we recover the same exponent of the algorithm for a
general matrix, i.e., 2N , for permanent, whereas it has a gap
for loop hafnian (2N=2 for general loop hafnian) [27,30].
Classical sampling algorithms based on treewidth.—We

now introduce classical sampling algorithms of SPBS and
GBS using limited connectivity. Although we have algo-
rithms computing permanent or loop hafnian using a given
graph’s structure, how to use such algorithms for sampling
is not clear. Remarkably, we show that if we employ as a
main routine chain rule of marginal probabilities, such as
the Clifford-Clifford algorithm [57] for SPBS, and a

FIG. 1. (a) Input (red dots) and output (blue dots) photon
configuration, corresponding bipartite and symmetric graphs, and
their tree decompositions of width w ¼ 2. (b) Graph and its
possible tree decomposition of width w ¼ 3.
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recently proposed GBS algorithm [58] and use our dynami-
cal programming to compute permanent or loop hafnian as
a subroutine, we can fully utilize the graph structure of a
given circuit including computing marginal probabilities
[33]. For simplicity, we focus on collision-free events, i.e.,
mi ¼ f0; 1g, while we provide algorithms for collisions
in Ref. [33].
Theorem 1 (classical sampling algorithm).—If the tree-

widths of bipartite graphs of US
r are at most w for all

possible outcomes r, we can classically simulate SPBS in
OðMN2w22wÞ. Similarly, if symmetric graphs of Bm have
the treewidths at most w for all outcomes m, we can
classically simulate GBS in OðMNw22wÞ.
Theorem 1 enables us to recover and generalize some

previously known results. One such example is efficient
simulability of shallow 1D GBS, i.e., depth D ¼ OðlogMÞ
by using limited bandwidth of the circuit’s unitary matrix
[59,60]. Since bandwidth is a special case of treewidth, we
recover the result and also find that the result holds for 1D
SPBS. For 2D cases, however, even for a constant depth,
we encounter with an output described by a graph includingffiffiffiffi
N

p
×

ffiffiffiffi
N

p
grid, whose treewidth is w ¼ ffiffiffiffi

N
p

[33,61]. This
is consistent with the recent hardness result of high-
dimensional GBS [62].
Approximate sampling.—When an approximation of a

given circuit has limited connectivity, we can expect that an
approximate sampling is possible using this structure.
However, it is not straightforward to apply the same method
if we approximate the circuit matrix by a nonunitary matrix,
because the corresponding process or the output state may
no longer be physical. Also, the chain-rule-based algo-
rithms implicitly assume unitarity of the process or a
legitimate quantum state. We present a method to overcome
this by introducing additional virtualM modes to make the
process physical again and investigate its approximation
error in Ref. [33].
Theorem 2 (approximate sampling).—If a circuit unitary

matrix U is approximated by U − dU, one can implement
sampling with the same complexity up to constant as
Theorem 1 with an error of polyðN; kdUk1=4F Þ.
We assess a simulation’s error by total variation distanceP
m jPðmÞ − PaðmÞj=2 between an ideal probability dis-

tribution PðmÞ and a classical algorithm’s output proba-
bility distribution PaðmÞ and desire an approximation error
to be O½1=polyðNÞ�. In the following section, we study an
experimentally relevant physical model, which is local
Haar-random circuits. Since a current GBS experiment
does not employ a specialized ensemble to implement a
global Haar-random circuit [9], its setup can be considered
as a typical instance of the model. Also, it can be
interpreted as an extreme case where beam splitters’
reflectivities have a large uncertainty. We emphasize that
our approximation method in Theorem 2 is straightfor-
wardly applicable to similar dynamics (e.g., Ref. [63]).

Approximate sampling for local Haar-random circuits.—
ConsiderN identical sources equally distributed inM ¼ kNγ

modes of a d-dimensional lattice [64] and local Haar-random
beam-splitter arrays, as illustrated in Fig. 2. The lattice
consists of d-cube sublattices of edge lengthL ¼ ðM=NÞ1=d,
containing a single source. For simplicity, let L be a positive
integer.
As recently studied, random beam-splitter arrays can be

characterized by a classical random walk [65]. Therefore,
photons propagate diffusively on average. Using this
property, we find an upper bound on the leakage rate from
a source at sα up to κL denoted as ηαðκÞ≡P

j jUj;sα j2,
where j is the sum over modes away from α more than κL.
Lemma 2.—For depth D ≤ dk2=dκ2N2ðγ−1Þ=d−ϵ=2 with

ϵ > 0, the leakage rate ηα to distance κL is bounded from
above as

ηαðκÞ ≤ expð−NϵÞ ð3Þ

with a probability 1 − δ over Haar-random beam-splitter
arrays, where δ is exponentially small in N.
For later usage for d ¼ 1, we note that the same

inequality holds for D ≤ k2κ2N2ðγ−1Þ−ϵðlogNÞ2=2 for leak-
age rate to distance κL logN. Motivated by Lemma 2, our
approximate sampling strategy is to discard the elements of
a unitary matrix that are geometrically farther from sources
than κL, i.e., U→Ũ≡U−dU, and implement Theorem 2.
Since kdUk2F ¼ P

α∈S ηαðκÞ is exponentially small, the
sampling error is, too. From now on, we focus on typical
circuits, emphasizing that the portion of atypical circuits is
exponentially small.
Consider a special case (κ ¼ 1=2) where interference

between photons from different sources is negligible
typically. In this case, for SPBS, possible outputs can be

(a) (b)

(c) (d)

FIG. 2. Initial state in (a) 1D and (c) 2D architectures. Red dots
represent sources. Lα represents a sublattice having a single
source sα. Beam-splitter arrays in (b) 1D and (d) 2D architecture.
A single round consists of four steps (1)–(4). The structure can be
generalized for d-dimensional architecture, where a single round
consists of 2d steps.
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described by a disconnected graph, in which at most two
vertices are connected; thus, the treewidth is 1. For GBS,
assuming that a single source emits a constant number of
photons at most, graphs describing possible outcomes are
again disconnected with a constant number of vertices and
have bounded treewidth. One may also show that sampling
for this regime is easy by noting that the hafnian of a low-
rank matrix can be efficiently computed without the
assumption [27]. Thus, we have the following theorem.
Theorem 3 (efficient-sampling regime).—Approximate

BS can be efficiently performed for typical circuits of
depth D ≤ Deasy ≡ dk2=dN2ðγ−1Þ=d−ϵ=8 ¼ ΘðN2ðγ−1Þ=d−ϵÞ.
Especially for d ¼ 1, the upper bound becomes D ≤
k2κ2N2ðγ−1Þ−ϵðlogNÞ2=2.
We note that the distinct upper bound for 1D arises

because the treewidth OðlogNÞ can be efficiently
simulated.
After D > Deasy (or κ > 1=2), photons from a sublattice

can now propagate to other lattices so that photons from
different sources start to interfere [see Fig. 3(a)]. Thus,
induced graphs have edges between sources and photons
from different sublattices (SPBS) or photons from different
sources (GBS) as shown in Fig. 3(b). In this case for 2D
architecture, there exists an outcome corresponding to a
graph containing a grid whose treewidth is unbounded, i.e.,
w ¼ ffiffiffiffi

N
p

. Therefore, the sampling complexity starts to
scale exponentially in

ffiffiffiffi
N

p
[33], which reveals a sharp

transition of the complexity at D ¼ Deasy from polynomial
to subexponential. Similarly, when photons propagate
further and for arbitrary dimension, i.e., D ¼
ΘðN2α=dDeasy) with 0≤α≤1 [equivalently, κ ¼ ΘðNα=d)],
we can find a tree decomposition whose width is
ΘðNðα=dÞþ½ðd−1Þ=d�Þ for any outcomes. Therefore, we have
the following theorem.
Theorem 4 [(sub)exponential regime].—One can sample

from typical linear-optical circuits of D ¼ ΘðN2α=dDeasyÞ
with 0 ≤ α ≤ 1 by complexity O½polyðNÞ2ΘðNðα=dÞþ½ðd−1Þ=d��.

Especially when α ¼ 1, any photons can propagate to all
modes—i.e., photons fully interfere each other—which
forms the complete graph for all outcomes, so that
treewidth becomes ΘðNÞ. Since generic global Haar-
random circuits are fully connected, at least ΘðN2γ=dÞ ¼
ΘðM2=dÞ order of depth is required to implement a global
Haar-random circuit using a local Haar-random circuit and
such an input configuration. Figure 4 summarizes the
result.
Interestingly, the recent GBS experiments’ circuit

depth scales as
ffiffiffiffiffi
M

p
[9,10], which implies that their circuit

is not sufficient to form a global Haar-random circuit.
Nevertheless, aside from the deviation from global Haar-
random matrices, locality in their circuit is not apparent,
because the scale is intermediate while our analysis focuses
on an asymptotic regime. Therefore, our approximate
algorithm might result in a large simulation error for this
intermediate-scale GBS because of a large constant factor
of the error.

(a) (b)

FIG. 3. GBS on 2D lattice with N ¼ 36, M ¼ N2, and γ ¼ 2.
(a) Red dots represent initial sources. The black solid line
describes the region at which a particular input photon can
typically propagate for D ¼ ΘðL2ð1−ϵÞÞ ¼ ΘðN1−ϵÞ. (b) Possible
tree decomposition of the symmetric graph Bm when outputs are
at the same position with input sources. An upper bound on the
treewidth is Θð ffiffiffiffi

N
p Þ as shown: the first bag (blue) and the second

one (yellow).

FIG. 4. The complexity diagram for local Haar-random BS. As
the star marks, a sharp transition occurs for the complexity of our
algorithm. Easiness for any circuits (asterisk symbol) is proved in
Ref. [63]. Note that, for 1D, the depth that is easy for typical
circuits is larger (see Theorem 3).

(a)

(b)

FIG. 5. Likelihood test for the recent GBS experiment [10].
(a) Rearranged mode configuration with squeezed states sources
(red dots). For approximated sampling, we discard elements of a
circuit matrix U that is farther than K for the sources. (b) Log-
likelihood ratio of experimental samples against those from the
treewidth algorithm.
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One may also consider other initial configurations under
local Haar-random circuits; for example, sources are
concentrated on a certain region. We show that, for those
cases, one already needs a depth D ¼ ΘðNDeasyÞ to reach
the collision-free regime, and, thus, collision occurs with a
high probability, while equally spaced sources reach the
collision-free regime when D ¼ ΘðDeasyÞ [33].
GBS validation test.—Finally, we implement the

likelihood test to experimental samples [10] against
samples generated by our treewidth-based approximate
algorithm:

ratio≡ log
Pridealðsamples from experimentÞ

Pridealðsamples from treewidth algorithmÞ ; ð4Þ

which is equivalent to the test implemented in Refs. [9,10].
Thus, we compare the likelihood of each sample set with
respect to the (lossy) ideal probability distribution.
For the treewidth algorithm, we have approximated local

Haar-random with limited propagation [see Fig. 5(a)] and
sampled from the approximated circuit using Theorem 2.
Specifically, we have rearranged the 144 modes one-
dimensionally and set a propagation length K for approxi-
mation. Note that setting a propagation length K implies
that the corresponding GBS’s treewidth is w ¼ 2K þ 1 and
that a complete graph has treewidth w ¼ M. To compensate
for the lost photons from the approximation, we have
increased the squeezing parameters and thermal photons to
have the same average total photon numbers.
In Fig. 5(b), we present the likelihood ratio as the number

of samples increases for two classically verifiable instances
of the experiments in Ref. [10]. It clearly shows that the
treewidth-based approximate algorithm renders larger like-
lihood than the experiment. We also provide evidence in
Ref. [33] for GBS experiments in the quantum supremacy
regime by investigating the likelihood ratio for marginals
that the treewidth-based algorithm might give a larger
likelihoodwith a limited treewidth. Therefore, the numerical
results imply that a fully connected circuit is crucial formore
rigorous quantum-advantage demonstration.
Discussion.—We have presented classical samplers tak-

ing advantage of limited connectivity of a circuit. It is an
interesting open question to find more efficient sampling
algorithms than the one based on the treewidth. Another
open problem is to close the gap of complexity for
computing loop hafnian between the treewidth-based
algorithm (2N) and the best-known algorithm (2N=2) [58].
Finally, Theorem 3 shows that typical linear-optical

circuits up to depth D ≤ Deasy ¼ ΘðNð2=dÞðγ−1Þ−ϵÞ allow
an efficient classical simulation except for an exponentially
small fraction of random circuits. Meanwhile, there exists a
circuit hard to classically simulate for D ¼ ΩðN½ðγ−1Þ=d�þϵÞ
under reasonable complexity-theoretic conjectures
[6,63,66]. Theorem 3 can be compatible with the hardness
results, since together the implication is that the worst-case

instances occupy only at most an exponentially small
fraction of the space of all linear optical circuits.
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