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The dynamical signatures of quantum chaos in an isolated system are captured by the spectral form
factor, which exhibits as a function of time a dip, a ramp, and a plateau, with the ramp being governed by
the correlations in the level spacing distribution. While decoherence generally suppresses these dynamical
signatures, the nonlinear non-Hermitian evolution with balanced gain and loss (BGL) in an energy-
dephasing scenario can enhance manifestations of quantum chaos. In the Sachdev-Ye-Kitaev model and
random matrix Hamiltonians, BGL increases the span of the ramp, lowering the dip as well as the value of
the plateau, providing an experimentally realizable physical mechanism for spectral filtering. The chaos
enhancement due to BGL is optimal over a family of filter functions that can be engineered with fluctuating
Hamiltonians.
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Non-Hermitian physics offers an exciting arena at the
frontiers of physics where nonequilibrium phenomena
govern. In such a scenario, the evolution no longer
conserves energy and is characterized by dissipation [1].
Its relevance was soon appreciated in nuclear theory [2],
chemical dynamics [3], and quantum optics [4], but its
manifestations span over a wide diversity of fields such as
mechanics, photonics, and active matter [1]. Condensed
matter theory of many-body physics is actively being
extended in this setting. An exciting frontier focuses on
the interplay between the nonequilibrium dynamics of non-
Hermitian systems and quantum chaos.
Statistical features of the energy spectrum of an isolated

system play a crucial role in the dynamics and differentiate
systems exhibiting quantum chaos from others governed by
integrability, many-body localization, etc. The level spac-
ing distribution varies in these systems from the Wigner-
Dyson distribution to an exponential decay [5,6], although
a clear-cut classification between chaotic and integrable
systems is often more subtle [7]. Quantum chaos is
associated with correlations among energy levels, as
revealed by the two-point energy-level distribution [8].
In particular, correlations between energy levels can be
conveniently captured by the spectral form factor (SFF)
defined in terms of the Fourier transform of the energy
spectrum [9–12] or its complex Fourier transform, which
can be written in terms of the partition function of
the system analytically continued to complex temperature
[13–15]. Spectral correlations also manifest directly in the
Loschmidt echo [16–18] and the quantum work statistics
[19–22]. The identification of universal features in spectral

statistics is generally eased by the use of spectral filters
which has become ubiquitous in theoretical and numerical
studies of quantum systems, chaotic or not [23–27].
At the time of writing, it remains unclear how signatures

of quantum chaos are modified in open quantum systems
[6,28]. To tackle this question, one can make use of
random-matrix tools [29], as done conventionally for
Hamiltonian systems in isolation, but to describe quantum
operations instead [6,30–35]. These efforts follow the spirit
of Hamiltonian quantum chaos in adopting a statistical
approach to identify generators of evolution (or quantum
channels) compatible with a set of symmetries. In addition,
diagnostic tools to characterize open quantum chaotic
systems remain to be developed. Efforts to this end can
be split into two groups. The first one focuses on the
spectral statistics of the generator of the evolution of an
open quantum system, whether it is a Liouvillian governing
the rate of change of a quantum state or a quantum channel
[33,36–38]. This powerful approach leverages the elegance
and universality of the Hamiltonian counterpart but seems
better suited to capture the dynamics of complex systems in
complex environments than to explore how Hamiltonian
chaos is altered by decoherence. The second approach uses
information-theoretic quantities such as the fidelity or
Loschmidt echo and can provide a clear separation between
the role of the environment and the spectral features of the
system, singling out the correlations in the system’s
spectral properties that contribute directly to the quantum
dynamics [39–41].
Across the quantum-to-classical transition, decoherence

brings out signatures of classical chaos [42–44]. By
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contrast, decoherence generally suppresses dynamical
manifestations of quantum chaos stemming from energy
level correlations [39–41,45–48]. In this Letter, we explore
the non-Hermitian evolution of chaotic quantum systems.
We show that in this setting environmental decoherence
can enhance dynamical signatures of quantum chaos.
Specifically, we consider the nonlinear evolution of
energy-diffusion processes under balanced gain and loss,
which is shown to act as a spectral filter. Using the
Sachdev-Ye-Kitaev model as a paradigmatic test bed, we
demonstrate the amplification of quantum chaos using a
fidelity-based generalization of the spectral form factor to
open quantum systems, which is amenable to studies in the
laboratory.
Balanced gain and loss from null-measurement

conditioning.—The Markovian evolution of a quantum
system in a quantum state ρ can be described by a master
equation of the Lindblad form dtρ ¼ −i½H0; ρ�þP

α γαðKαρK
†
α − 1

2
fK†

αKα; ρgÞ, in terms of the positive
decay rates γα ≥ 0 and the bath operators Kα [49]. For
our analysis, we rewrite this evolution as follows [50]:

dtρ ¼ −iðHeffρ − ρH†
effÞ þ JðρÞ; ð1Þ

in terms of the effectively non-Hermitian Hamiltonian
given by Heff ¼ H0 − ði=2ÞPα γαK

†
αKα and the jump

term JðρÞ ¼ P
α γαKαρK

†
α. In the absence of quantum

jumps, the contribution of the latter term can be ignored,
and the dynamics is exclusively governed by the non-
Hermitian Hamiltonian. The trace preserving evolution for
such subensemble of trajectories is given by the nonlinear
Schrödinger equation for null-measurement conditioning,

dtρ ¼ −iðHeffρ − ρH†
effÞ þ iTr½ðHeff −H†

effÞρ�ρ; ð2Þ

which also arises in non-Hermitian systems in scenarios
characterized by balanced gain and loss (BGL) [51]. Thus,
BGL dynamics can be derived as the effective evolution of
an ensemble of quantum trajectories conditioned on a
measurement record with no quantum jumps, e.g., in a
system under continuous monitoring [50]. We note
that BGL dynamics also emerges naturally in other exper-
imental settings effectively realizing non-Hermitian
Hamiltonians with broken parity-time symmetry, in which
eigenvalues come in complex conjugate pairs [52,53]; see,
e.g., Refs. [54–58].
Energy dephasing with and without quantum jumps.—

Processes characterized by energy dephasing arise naturally
in a variety of scenarios, including random quantum
measurements [59,60], clock errors in timing the evolution
of a quantum system [61], and fluctuations in the system
Hamiltonian [62,63], such as those invoked by
wave function collapse models [64–66]. The evolution
of the quantum state is then exactly described by
dtρ ¼ −i½H0; ρ� − γ½H0; ½H0; ρ��, with no restriction on γ

to be in the weak-coupling limit [39,67]. This can be recast
as the master equation (1) in terms of a non-Hermitian
Hamiltonian Heff ¼ H0 − iγH2

0 and the quantum jump
term JðρÞ ¼ 2γH0ρH0. In the absence of quantum jumps,
the trace-preserving evolution is described by the nonlinear
master equation (2). Given H0 ¼

P
n Enjnihnj, for a

generic initial quantum state ρð0Þ ¼ P
nm ρnmð0Þjnihmj,

the exact solution can be found by first solving the linear
case, dropping the nonlinear term which simply accounts
for the correct normalization, and subsequently including
its effect. The time-dependent density matrix reads

ρðtÞ ¼
P

nmρnmð0Þe−iðEn−EmÞt−γtðE2
nþE2

mÞ
P

nρnnð0Þe−2tγE2
n

jnihmj: ð3Þ

With knowledge of the quantum state during time evo-
lution, we turn our attention to the interplay among
Hamiltonian quantum chaos, energy dephasing, and
BGL. In open quantum systems, different quantities have
been proposed to characterize dissipative quantum chaos
using spectral properties [6,16,17,31,39,41]. An analogue
of the SFF is given by the fidelity between a coherent Gibbs
state

jψβi ¼
X

n

e−βEn=2

ffiffiffiffiffiffiffiffiffiffiffiffi
Z0ðβÞ

p jni; Z0ðβÞ ¼ Tr½e−βH0 �; ð4Þ

and its time evolution [15,39–41]. For an arbitrary dynam-
ics described by a quantum channel Λ, ρðtÞ ¼ Λ½ρð0Þ�, the
analogue of the SFF reads Ft ¼ hψβjρðtÞjψβi. In the limit
of unitary dynamics generated by a Hermitian Hamiltonian
H0, one recovers the familiar expression [13–15]
Ft ¼ jZ0ðβ þ itÞ=Z0ðβÞj2. The result under energy-
dephasing has been explored in Refs. [39–41]. Explicit
evaluation using the time-dependent density matrix under
BGL (3) yields the SFF

Ft ¼
jPne

−ðβþitÞEn−γtE2
n j2

Z0ðβÞ
P

ne
−βEn−2tγE2

n
: ð5Þ

This expression corresponds to a single system
Hamiltonian and is generally to be averaged over a
Hamiltonian ensemble to reflect eigenvalue correlations,
unless the system is self-averaging. The fidelity-based
approach to generalize the SFF is thus naturally suited
to account for non-Hermitian quantum systems, including
the nonlinear evolution characterized by BGL. With these
tools at hand, we proceed to explore the fate of the
dynamical signatures of quantum chaos in this setting.
BGL dynamics of the Sachdev-Ye-Kitaev model.—For

the sake of illustration, we consider the Sachdev-Ye-Kitaev
(SYK) model which is known to be maximally chaotic. The
Hamiltonian of the SYK model [68,69]
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H0 ¼
1

4ð4!Þ
XN

k;l;m;n¼1

Jklmnχkχlχmχn; ð6Þ

involves N Majorana fermions satisfying fχk; χlg ¼ δkl
subject to all-to-all random quartic interactions. The cou-
pling tensor Jklmn is completely antisymmetric, and inde-
pendently sampled from a Gaussian distribution Jklmn ∈
N ð0; ½3!=ðNÞ3�J2Þ, where J2 ¼ ð1=3!ÞPklmnhJ2klmni. We
set J ¼ 1 for convenience. Its experimental simulation is
the subject of ongoing studies [70–74] and the features of
the SFF in isolation have been characterized in depth [13].
It exhibits a decay from unit value towards a correlation
hole or dip. This decay is governed by the density of states
and as such, it is not universal. It stops at a characteristic dip
time td. After the correlation hole, quantum chaos governs
the evolution giving rise to a ramp as a result of the
correlations between different energy levels. Such a ramp
saturates to a plateau at a second characteristic time tp, as
shown in Fig. 1 for γ ¼ 0. The occurrence of the ramp
during the interval ðtd; tpÞ is a clear manifestation of
quantum chaos in the dynamics. Such dynamical signatures
of quantum chaos are however suppressed by decoherence.
Indeed, energy dephasing, which includes quantum jumps,
reduces the depth of the correlation hole and delays the

beginning of the ramp, while barely affecting the onset of
the plateau [41].
In stark contrast, BGL dynamics is shown to enhance the

dynamical signatures of quantum chaos. An explicit com-
putation of the SFF for the SYK model is shown in Fig. 1
averaging over different realizations of the disorder. Results
in other paradigms of chaos, such as random-matrix
Hamiltonians in the Gaussian orthogonal and unitary
ensembles, are detailed in Ref. [75], with an analytical
expression for the latter. The effective non-Hermitian
Hamiltonian accelerates the nonuniversal decay from unit
value (associated with the disconnected part of the SFF),
thus shifting the onset of the dip. BGL provides a physical
mechanism to implement the kind of spectral filter pro-
posed to suppress nonuniversal effects from the spectral
edges in theoretical and numerical studies [23–27]. Such
filters provide an analog of apodization in the time domain,
suppressing fringes stemming from the sharp edges of the
spectrum in the SFF. As seen from the numerator of Eq. (5),
the anti-Hermitian part of the effective non-Hermitian
Hamiltonian Heff ¼ H0 − iγH2

0 gives rise to a Gaussian
spectral filter gðEÞ ¼ expð−γtE2Þ, with a strength that
increases linearly in time and width that decreases as
1=

ffiffiffiffi
γt

p
, while the BGL dynamics enhances the signal of

the fidelity by making the evolution trace preserving,
giving rise to the denominator in Eq. (5). The subsequent
ramp spans over a stage of the evolution which is not only
longer than in the case under energy dephasing, but that
also exceeds the ramp interval in the isolated case, e.g., the
conventional SFF for unitary dynamics. Away from the
infinite temperature limit, the ramp is prolonged up to 2
orders of magnitude over the unitary case, see Fig. 1(d).
For an isolated system (γ ¼ 0), denoting the degeneracy

of an energy level En by Nn, the asymptotic value of
the SFF is given by Fp ¼ ½1=Z0ðβÞ2�

P
n Nne−2βEn ≥

½Z0ð2βÞ=Z0ðβÞ2�, where the lower-bound holds in the
absence of degeneracies (Nn ¼ 1 ∀ n), expected in quan-
tum chaotic systems. In the infinite-temperature limit,
Fp ¼ 1=d is set by the inverse of the Hilbert space
dimension and thus vanishes with increasing system size.
This asymptotic value is preserved under energy dephasing,
as the long-time quantum state is given by the thermal state
ρp ¼ P

n expð−βEnÞjnihnj=Z0ðβÞ. However, Fig. 1 shows
that the asymptotic value varies in the BGL case. For γ > 0,
the long-time limit of the fidelity reads

Fp ∼
P

nN
2
ne−2βEn−2γtE2

n

Z0ðβÞ
P

nNne−βEn−2γtE2
n
≥

1

Z0ðβÞ
; ð7Þ

where the inequality is saturated for systems lacking degen-
eracies, e.g., exhibiting quantum chaos. The discrepancy
between the unitary andBGL plateau values is thus enhanced
with decreasing temperature.
Even if the plateau value Fp of the SFF varies under

BGL, the characteristic time tp at which this asymptotic

FIG. 1. Enhancement of quantum chaos under BGL in an
energy-dephasing process. The time dependence of the fidelity
between a coherent Gibbs state and its nonlinear time evolution is
shown in the SYK model with N ¼ 26, after averaging over 100
realizations of Jklmn. The enhancement of quantum chaos is more
pronounced as the value of β is increased. Under BGL, the dip is
enhanced, increasing the span of the ramp associated with fully
chaotic dynamics. The value of the plateau is lowered with
respect to the unitary case without a pronounced shift of its onset.
For larger values of γ, the features of the SFF in isolation are
gradually washed out by the nonunitary evolution. In particular,
the span of the ramp is shrunk, without altering the onset of the
plateau and its value.
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value is reached is only weakly affected by BGL with
respect to the unitary case and the enhancement of the ramp
can be traced to the shortening of the dip time td induced by
the BGL spectral filter. As the ramp is governed by the
eigenvalue correlations stemming from quantum chaos,
their enhancement can be quantified by the ratio tp=td as a
function of the dephasing rate γ that enters the Gaussian
filter term in Eq. (5); see Fig. 2(a). There is a critical value
of γ above which BGL minimizes the ramp as decoherence
mechanisms generally do. However, for values of γ below
the critical one, the duration of the ramp is enhanced with
increasing dephasing. The enhancement is more pro-
nounced for larger values of β for which it exceeds 2
orders of magnitude.
Given an energy spectrum fEng, obtained by theoretical

or experimental means, one may wonder whether other
filter functions provide an advantage over the Gaussian

filter in enhancing signatures of quantum chaos. A filter
function gðEÞ ≥ 0 yields the modified SFF

Ft ¼
jPne

−ðβþitÞEngðEnÞj2
Z0ðβÞ

P
ne

−βEngðEnÞ2
: ð8Þ

We consider the family of filter functions
gðEÞ ¼ expð−γtjEjδÞ, which includes the Gaussian case
for δ ¼ 2. Those with δ ≥ 2 can be engineered by gene-
ralized energy dephasing processes conditioned on BGL
as discussed in the Supplemental Material [75]. For
completeness, we also consider 0 < δ < 2. Figure 2(b)
shows that the Gaussian filter is optimal in the sense that it
maximizes the duration of the ramp with respect to the
family of higher-order Gaussian filter functions
expð−γtjEjδÞ with δ ≥ 0. More general filters are discussed
in Ref. [75].
Quantum simulation of energy dephasing under BGL.—

The features presented here are not exclusive to the SYK
model and we have reproduced them in other quantum
chaotic systems, e.g., random-matrix Hamiltonians, as
shown in Ref. [75]. However, the phenomenology
described thus far is specific to energy dephasing processes
governed by BGL. Other open quantum systems unrelated
to energy dephasing do not exhibit an enhancement of the
dynamical signatures of quantum chaos in the presence of
BGL. Indeed, when the quantum jump operators Kα do not
commute with the system Hamiltonian H0, the SFF
generally loses the signatures of quantum chaos, with or
without quantum jumps. Said differently, a general
Markovian dehasing evolution (e.g., of the kind considered
in Ref. [76]) suppresses completely the dip and ramp in the
SFF as shown in Ref. [75]. Thus, energy dephasing stands
out as the only kind of time evolution that can be used to
enhance dynamical manifestations of chaos in the labo-
ratory, when conditioned to BGL. From an experimental
point of view, energy dephasing is amenable to quantum
simulation by coarse graining in time the evolution of an
isolated system [39–41]. The SFF under BGL can be
expressed as

Ft ¼
j R∞

−∞ dsKðt; sÞZ0ðβ þ isÞj2
Z0ðβÞ

R∞
−∞ dsds0Kðt; sÞKðt; s0ÞZ0½β þ iðs − s0Þ� ; ð9Þ

in terms of the kernel Kðt; sÞ ¼ ð1= ffiffiffiffiffiffiffiffiffi
4πγt

p Þe−½ðt−sÞ2=4γt�.
Knowledge of the analytically continued partition function
Z0ðβ þ isÞ thus suffices to determine the SFF under BGL.
A variety of experimental techniques have been demon-
strated to measure the partition function in the complex
plane, given its manifold applications that range from the
study of Lee-Yang zeroes in critical systems [77–80] to the
full counting statistics of many-body observables [81] and
positive operator-valued measures such as work in quantum
thermodynamics [82,83]. A ubiquitous approach relies on
single-qubit interferometry that utilizes a two-level system

(b)

(a)

FIG. 2. (a) Quantifying the enhancement of quantum chaos
under BGL in the SYK model. The ratio between the dip and the
plateau times is shown as a function of the dephasing rate γ for
different values of the inverse temperature β. (b) The Gaussian
filter δ ¼ 2 that emerges under energy diffusion with BGL is
shown to be optimal over the family of filter functions gðEÞ ¼
expð−γtjEjδÞ in maximizing the duration of the ramp. Data for
N ¼ 26 is averaged over 100 realizations of Jklmn.
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or qubit as a probe [84–88]. Experimental demonstrations
include, e.g., NMR systems [89] and ultracold gases [90].
An alternative experimental approach can be conceived by
engineering energy dephasing using noise as a resource
[67,91] and measuring the overlap between the initial
coherent Gibbs state and its time-evolution either via
learning quantum algorithms [92] or interferometry [93].
In summary, we have considered the nonlinear non-

Hermitian evolution of a quantum chaotic system under
balanced gain and loss. Using a fidelity-based generaliza-
tion of the spectral form factor we have shown that the
interplay between energy dephasing and BGL enhances the
dynamical signatures of quantum chaos by providing an
experimentally realizable physical mechanism for spectral
filtering, i.e., the optimal filter function of Gaussian type.
Spectral filtering has become a ubiquitous tool in theoreti-
cal and numerical studies of many-body systems, chaotic or
not. As a result, our findings motivate the use of BGL as a
generic practical tool to probe the spectral features in
complex quantum systems. In addition, our results advance
the understanding of dissipative quantum chaos and could
be explored in quantum simulators by making use of
established experimental techniques such as noise engi-
neering and single-qubit interferometry.
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