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We report experimental verification of the recently predicted collective modes of spinons, stabilized by
backscattering interaction, in a model quantum spin chain material. We exploit the unique geometry of
uniform Dzyaloshinskii-Moriya interactions in K2CuSO4Br2 to measure the interaction-induced splitting
between the two components of the electron spin resonance (ESR) response doublet. From that we directly
determine the magnitude of the “marginally irrelevant” backscattering interaction between spinons for the
first time.
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Much of the current research in quantum magnetism is
motivated by the search for an elusive quantum spin liquid
(QSL) phase of the magnetic matter. A salient feature of
this entangled quantum state is the presence of fractional-
ized elementary excitations such as fermionic spin-1=2
spinons, interactions between which are mediated by the
emergent gauge field [1,2]. This exotic, yet deeply rooted
in history [3–7] perspective represents striking contrast
with the usual integer-spin bosonic spin-wave excitations
of the magnetically ordered media. It is firmly based on
the remarkable experimental findings on (quasi) one-
dimensional (1D) spin-1=2 magnetic insulators. These
include observations of a particle-hole continuum of
excitations (also referred to as a “two-spinon continuum”)
in the dynamical spin susceptibility χðq;ωÞ [8,9] and
magnetic field-controlled soft modes resulting from tran-
sitions on the Zeeman-split 1D Fermi surfaces [10,11]. The
most recent milestone of this journey is provided by the
Kitaev’s honeycomb model which harbors Majorana fer-
mions as elementary excitations [12]. Experimental glimp-
ses of this exciting physics [13–15] continue to attract
intense attention from the scientific community.
Close analogy between fractionalized excitations of the

QSL and those of the standard Fermi liquid contains an
important caveat. Unlike the latter, elementary excitations
of the QSL are highly nonlocal objects which appear and
disappear only in pairs. Thus, the spinons cannot avoid
interacting with each other. Interaction between spinons, as
well as the curvature of the spinon dispersion, determine
shape of the continuum near its edges [16,17]. In particular,
one may expect a strong backscattering between the
fermionic quasiparticles confined in 1D geometry. Still,
being a “marginally irrelevant” interaction in the renormal-
ization group (RG) sense [18,19], the spinon backscattering
manifests itself only throughweak logarithmic corrections to

the observables (e.g., the uniform spin susceptibility [20], or
the nuclear magnetic relaxation rate [21]) and is barely
detectable this way. As the very recent theoretical findings
show, it becomes most important when magnetic field is
applied, shifting spinon continuum up in energy and pro-
ducing a spin-1 oscillatory collective mode of spinons [22]
that originates from the Larmor frequency, a spin chain
analog of the Silin spin wave in nonferromagnetic metals
[23–27]. The backscattering interaction is straightforwardly
manifest here through qualitative spectrum modifications
[22,28].However, direct observationof this novel effectwith,
e.g., neutrons is a challenging task that requires thoroughly
balancing the field strength, the magnetic energy scale of the
material, and the instrument resolution. Yet, alternative
spectroscopic methods can overcome these difficulties.
In this Letter, for the first time, we experimentally

investigate this interaction-induced modification of the
spinon continuum with the help of the electron spin reso-
nance (ESR) technique. Our measurements lead to the direct
and unambiguous determination of the backscattering inter-
action between fractionalized spinon excitations of the spin
chain. This finding is facilitated by the unique feature of
the material—the uniform Dzyaloshinskii-Moriya (DM)
interaction [29,30].
The material of our study is K2CuSO4Br2, providing an

outstanding realization of the S ¼ 1=2 Heisenberg chain
antiferromagnet perturbed by a small uniform DM
interaction [32–35]. The magnetic Cu2þ spin-1=2 ions at
distance a ¼ 7.73 Å to each other are forming linear
chains running along the a axis of the crystal [see inset
of Fig. 1(a)]. Antiferromagnetic interaction J ≃ 20.5 K [32]
is mediated by a two-bromine unit, which lacks an
inversion center within the ac plane. This lack of inversion
symmetry naturally gives rise to the small DM interaction
directed along the b axis. Hence, it can be described as a
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Heisenberg spin-1=2 chain, with exchange interaction J
between nearest-neighbor spins, perturbed by the uniform
DM interaction D · Ŝn × Ŝnþ1 and subject to the external
magnetic field H. We focus on the parallel geometry when
the magnetic field is aligned along the DM axis (z axis),
HkDkẑ, which preserves the symmetry of rotations about z.
The Hamiltonian reads

Ĥ ¼
X
n

JŜn · Ŝnþ1 −Dẑ · Ŝn × Ŝnþ1 − gμBHŜzn: ð1Þ

Semiclassically, the competition between the antiferro-
magnetic Heisenberg exchange J and DM interaction D
results in an incommensurate spiral, the period of
which is determined by the wave vector qDM ¼
tan−1ðD=JÞ=a ≈D=ðJaÞ. Quantum mechanically one can
employ the unitary position-dependent rotation of spins

Ŝþn ¼ ˆ̃S
þ
n e−iqDMna which eliminates the DM term from

the Hamiltonian (1) for the price of the momentum boost
q → qþ qDM [31,36].
A uniform, bond-independent arrangement of DMvectors

within the chain is a very rare occasion. However, a truly
remarkable property of K2CuSO4Br2 that distinguishes it
from similar materials (e.g., Cs2CuCl4 [37,38]) is that the
DMaxis is the same, i.e., oriented along theb crystal axis, for
all spin chains [32]. This unique feature allows us to realize
HkD geometry experimentally, which is a crucial element of
our study. In this case the energy absorption ratemeasured by
ESR is in fact determined by Im½χ̃�ðqDM; νÞ� [36,39]—the
ESR becomes a finite momentum probe of the dynamic spin
susceptibility.
The response of the chain (1) at small momenta can in turn

be understood in terms of fermion quasiparticles—spinons
[22,40]. In the low-energy continuum limit the Heisenberg

spin-1=2 chain is described by the field theory of two
component Dirac spinors ψ̂R=L ¼ ðψ̂R=L;↑; ψ̂R=L;↓ÞT [41].
Operators ψ̂R=L;s describe spin-up (s ¼↑) and spin-down
(s ¼ ↓) fermions with wave vectors near the right and left
Fermi points �kF of the 1D Fermi surface. Uniform spin
fluctuations are represented by the spin current operators
ĴR=L ¼ 1

2
ψ̂†
R=Lσψ̂R=L. The Hamiltonian is written as the sum

of two terms, Ĥ ¼ Ĥ0 þ V̂bs,

Ĥ0 ¼
Z

dx½ℏvFðψ̂†
RðxÞð−i∂xÞψ̂RðxÞ þ ψ̂†

LðxÞði∂xÞψ̂LðxÞÞ

− gμBHðĴzRðxÞ þ ĴzLðxÞÞ�; ð2Þ

V̂bs ¼ −ℏu
Z

dxĴRðxÞ · ĴLðxÞ: ð3Þ

Here vF ¼ πJa=ð2ℏÞ is the spinon Fermi velocity, and u
denotes the backscattering (also known as the current-
current) interaction between spinons. Despite its somewhat
complicated appearance Ĥ0 describes a noninteracting gas
of neutral fermions (spinons) ψR=L;s with linear dispersion,
subject to the external magnetic field. Interaction between
spinons is compactly encoded in V̂bs, which describes 2kF
scattering of right- and left-moving fermions on each other.
The amplitude u of this backscattering is the key parameter
that we experimentally address in our study.
In the absence of the backscattering u interaction, the ESR

spectrum of the spin chain (1) is known to be a doublet [36],

hν� ¼
����gμBH � π

2
D

����; ð4Þ

accounting for both transverse χ� and χ∓ components of the
susceptibility. Its origin can be easily understood from the

(a) (b) (c)

FIG. 1. Electron spin resonance in K2CuSO4Br2. (a) Several low-T resonance lines. Magnetic field is applied along the DM axis b.
Gray points is the measured rate of absorption of the microwave radiation by the sample. It is well fitted by several Lorentzian lines (dark
red line). The contributions of modes νþ and ν− is shown in orange. At low frequencies an additional parasitic paramagnetic resonance
can be detected (light green). The inset shows the sketch of K2CuSO4Br2 crystal structure. (b) Calculated spectrum of small-q transverse
spin fluctuations in a magnetized spin chain without the backscattering interaction. (c) The same for the interacting spinons,
ℏu ¼ 2.38Ja. For K2CuSO4Br2 considered here J ¼ 20.5 K, and the magnetic field is 0.3 T in both panels. The solid lines show νðqÞ
for the poles of the transverse spin susceptibility according to Refs. [22,31], and the color shows their intensity. Black (red) horizontal
arrows indicate ESR frequencies of the spin chain without (black) and with (red) the DM interaction.
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low-energy spectrum of the spin chain depicted in Fig. 1(b).
The appearance of the ESR doublet in the quantum spin
liquid state of the spin chain is the fingerprint of the uni-
form DM interaction. It has been experimentally observed
previously in three different materials, Cs2CuCl4 [38],
the present compound K2CuSO4Br2 [42], and also in
K2CuSO4Cl2 [43].
However, the noninteracting spinon description of the

dynamic spin response is qualitatively incomplete. Similar
to the case of the interacting electron liquid [23,24], the
backscattering interaction u qualitatively changes trans-
verse spin susceptibility for small ðq; νÞ, as demonstrated
by the recent interacting spinon theory [22], supported by
DMRG calculations and numerical Bethe-ansatz study
[44]. The new poles of χ�;∓ are shown in Fig. 1(c). The
ESR frequencies are now given by [22]

hν� ¼
����gμBH þ Δ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ð1 − δ2Þ

�
π

2
D

�
2

s ����: ð5Þ

Here 2Δ ¼ ℏuhŜzi=a is the interaction-induced spectral
gap (splitting), and hŜzi=a ¼ χH is the mean spin z
component per unit length. The theory is most compactly
expressed in terms of the small dimensionless parameter δ,

δ ¼ 1

2a
ℏu

χ0
gμB

¼ u
4πvF

; ð6Þ

that describes the enhancement of the renormalized zero-
field spin susceptibility per unit length χ ¼ χ0=ð1 − δÞ,
from its noninteracting value χ0 ¼ gμBa=ð2πℏvFÞ. Using
δ, the splitting becomes

Δ ¼ δ

1 − δ
gμBH: ð7Þ

Even when D ¼ 0, Eq. (5) predicts the finite spectral gap
2Δ between the ν� branches, as Fig. 1(c) shows.
This feature does not contradict the Larmor theorem

because the intensity of the upper branch νþ vanishes as q2

in the q → 0 limit, whereas the lower intense branch ν−

remains exactly at the Larmor frequency h−1gμBH ¼ γH.
Hence, in the absence of the symmetry-breaking perturba-
tions the Larmor theorem is actually obeyed, and back-
scattering interaction u makes no difference for the ESR
experiment on the ideal spin chain. Thus, the symmetry-
breaking uniform DM interaction in Eq. (1) is absolutely
crucial for accessing both modes with ESR.
The experiments were done at the Kapitza Institute on a

set of multifrequency (1–250 GHz) resonant cavity ESR
inserts into 3He and 4He-pumping cryostats equipped with
superconducting magnets. The transmission of microwave
power P through the sample-containing resonator was
measured as the function of the magnetic field at a fixed
frequency ν. It is affected by the dissipative susceptibility of

the spin subsystem and can be approximately expressed as
ΔP=P ∝ χ00ð0; νÞ [45], or rather χ00ðqDM; νÞ in the presence
of the uniform DM interaction. To compare these predic-
tions with the ESR experiments on K2CuSO4Br2 we use
two sets of data. One, taken at T ¼ 0.5 K, was previously
partly described in Ref. [42]. The other set, taken at at
T ¼ 1.3 K, was not presented before. The datasets involve
multiple samples of K2CuSO4Br2.
Several examples of the raw spectrometer microwave

transmission data at 0.5 K are shown in Fig. 1(a). The data
demonstrate a well-resolved doublet of ν� lines, with a
parasitic line (not exceeding 25% of ν-lines intensity) in the
middle that comes from impurities and is sample depen-
dent. The intensity of this mode shows Curie-like temper-
ature dependence typical of impurity spins (see Ref. [42]
for more details). Even on the qualitative level one can
notice the increase of the distance between the νþ and ν−

components of the doublet with the resonance frequency,
and the accompanying “fading out” of the νþ mode. Both
effects are in agreement with the interacting spinon picture
that can be inferred from Fig. 1(c) and Eq. (5). For u ¼ 0,
the intensities of two modes are equal and the splitting is
field independent, determined by the magnitude of the DM
vector only, as previously found in the low-field range
below 1 T [42].
These observations can be further quantified by fitting

measured ESR spectra with three overlapping Lorentzian
functions to extract the precise intensities and resonant fields
[31]. Results of this new data analysis presented in Fig. 2
show a striking quantitative agreement with the interacting
spinon theory. The deviation between the data and the
noninteracting spinon approximation (4) is clearly visible
in the frequency-field diagrams of Figs. 2(a),2(b). While
being completely unexplainable within the previous non-
interacting approximation (4), all the “deviant” effects—the
upward deflection and the fading of the upper νþ mode, and
the restoration of the Larmor precession for the lower ν−

mode—are readily explained by the new interacting spinon
expression (5), (7). The upward shift of the νþ mode is the
consequence of the gap Δ (7) growing with the field. The
same effect is responsible for the upward approach of the ν−

mode towards the Larmor frequency, as is seen in Fig. 2.
Fitting the νðHÞ data to Eq. (5), we find an excellent

agreement between the experiment and the interacting-
spinon theory for the value δ ¼ 0.12� 0.005. By Eq. (6),
this means that the backscattering interaction constant is
ℏu=a ¼ 48.8� 2 K. This is a strong interaction indeed, it
corresponds to 2.38� 0.1 in the exchange coupling J
units. What matters, however, is that u enters Eqs. (5)
and (7) only via δ, which is quite small. This smallness
implies the consistency of the made theoretical assump-
tions. This is further confirmed by the spinon mean-free
path estimate [46], and analysis of u in terms of the RG
approach [19,31]. Note that DM interaction strength D,
while being an independent parameter of the fit, is
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actually unchanged compared to the previous estimate
0.26� 0.01 K [42]. Its value is fixed by the zero field
splitting πD=2which at zero magnetization is not affected
by the interaction u.
The intensity ratio Iþν ðHþÞ=I−ν ðH−Þ at a fixed frequency

ν (with H� being the resonant fields of the corresponding
modes) is another quantity that can be determined both
theoretically and experimentally. The theory [22] predicts

Iþν ðHþÞ
I−ν ðH−Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhνδÞ2 þ ðð1 − δ2ÞπD=2Þ2

p
− hνδffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhνδÞ2 þ ðð1 − δ2ÞπD=2Þ2
p

þ hνδ
: ð8Þ

This parameter-free comparison is shown in Fig. 2(c).
We find an excellent agreement between all our datasets
and the theory (8) for the derived value δ ¼ 0.12. Notice
that without the backscattering interaction u, i.e., for δ ¼ 0,
the ratio would be just 1 for all frequencies. [Note again that
Eq. (8) describes the ratio of intensities of modes ν�
measured at the same fixed frequency but for different
resonant fields H� while Figs. 1(b),1(c) illustrate relative
intensities of ν� modes for the fixed magnetic field. See
Ref. [31] Sec. IV.C.]
Thus, the relative attenuation of the νþ mode represents

an additional confirmation of the validity of the interacting
spinon description of K2CuSO4Br2.
To summarize, the observed field evolution of the

ESR spectrum is very well explained by the model of
interacting spinons. The normally well-hidden backscatter-
ing interaction turns out to be a crucial ingredient for both
qualitative and quantitative description of the data. The
obtained value of the spinon backscattering interaction

u ≃ 1.5vF ≃ 3.5 × 105 cm=s is of the order of spinon veloc-
ity vF. Experimental confirmation of the importance of
interactions between spinons reveals a genuine Fermi-
liquid-like (in contrast to a Fermi-gas-like) behavior of the
quasiparticles constituting the spin chain ground state.
Dynamic small-momentum response of the quantum spin
chain demonstrates an amazing similarity with an electron
liquid and, in particular, Silin spin waves in nonferromag-
netic conductors [23,24]. This result paves way to spectro-
scopic investigations ofmore complex quantum spin liquids,
including higher-dimensional ones [47,48].
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