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We introduce a new class of out-of-equilibrium noninteracting topological phases: the topological space-
time crystals. These are time-dependent quantum systems that do not have discrete spatial translation

symmetries but instead are invariant under discrete space-time translations. Similar to the Floquet-Bloch
systems, the space-time crystals can be described by a frequency-domain-enlarged Hamiltonian, which is used
to classify topologically distinct space-time crystals. We show that these space-time crystals can be engineered

from conventional crystals with an additional time-dependent drive that behaves like a traveling wave moving
across the crystal. Interestingly, we are able to construct 1D and 2D examples of topological space-time
crystals based on tight-binding models that involve only one orbital, in contrast to the two-orbital minimal

models for any previously discovered static or Floquet topological phases with crystalline structures.

DOI: 10.1103/PhysRevLett.128.186802

Introduction.—Symmetry has been shown to play an
important role in topological classification of states of
matter. For noninteracting fermionic systems in the pres-
ence of discrete spatial translation symmetry (i.e., crystals),
the topological phase is characterized by the band structure
topology, which is constrained by other coexisting sym-
metries, including the on-site ones [1-5], and possibly
other crystalline symmetries from the crystal’s space
group [6-14].

Such a symmetry-based topological classification scheme
persists even when crystals are driven out of equilibrium,
which opens the possibility of engineering desired topo-
logical properties with external knobs. As a paradigm,
Floquet engineering, i.e., the control of quantum systems
by time-periodic external fields, turns out to be extremely
powerful. For example, robust electron conducting channels
can be brought at the boundary of an otherwise trivial two-
dimensional insulator upon a circularly polarized irradiation
or an alternating Zeeman field [15-19]. More generally, a
complete classification of the Floquet topological insulators
and superconductors when considering the on-site sym-
metries has been obtained in Refs. [20,21], and the classi-
fication can be further enriched if more crystalline
symmetries are taken into account [22,23].

When exploring the possible topological phases out of
equilibrium, besides focusing on the same symmetries as in
static situations, space-time symmetries [24,25], which
relate different parts of systems at different times, should
also be considered, as they arise completely due to the
newly added time dimension and have no analog in an
equilibrium setup. Indeed, certain space-time symmetries
are shown to lead to a different topological classification
from the one obtained using purely crystalline symmetries
[26-28]. Yet, there are some limitations in these works
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because the space-time symmetries considered are con-
strained by requiring the underlying system to be a
periodically driven crystal, with separate discrete trans-
lation symmetries along spatial and temporal dimensions
(which we refer to as the “Floquet-Bloch” scenario).

It has been proposed in Ref. [25] that more space-time
symmetries may exist if we remove the above mentioned
constraint, and we can have the so-called ‘“space-time
crystals,” which are characterized by the existence of
multiple discrete translation symmetries in the combination
of spatial and temporal dimensions. Then one natural
question to ask is can we have topologically protected
states in such systems? In this Letter, we shall provide a
definite answer to this question. An example of a 2D space-
time crystal in class A supporting topological protected
chiral edge modes is illustrated in Fig. 1.
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FIG. 1. Illustration of a 2D topological space-time crystal in
class A. (a) The vertical orange axis denotes the time coordinate.
The 2D noncrystalline lattice system at three different times is
shown in three colors. Besides being time periodic with period T,
the system is invariant under two additional discrete space-time
translations: (sy,$,T) and (s,,$,T). The system hosts chiral
boundary modes at quasienergy /T, indicated in yellow arrows.
(b),(c) Systems at different times are shown on top of each other
(in different colors): t = 0 with r = §,T, and 1 = O with t = T,
respectively. The two spatial translations are also shown.
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Space-time crystals.—As first introduced in Ref. [25],
the Hamiltonian H = &(p) + V(r, 1) describes a particle
moving in (D + 1)-dimensional space-time, parametrized
as (r,t). Here, £(p) is the momentum (p) dependent
kinetic energy, and the potential V(r, ) is assumed to have
(D + 1) linearly independent discrete space-time trans-
lation symmetries along (s;,z;) for i =0,1,2,...,D as
V(r,t) = V(r+s;.t+t;), which generalizes the familiar
Hamiltonian in the Floquet-Bloch case.

Because of the generalized Floquet-Bloch theorem
[25], the time-dependent Schrédinger equation (i, —
H)y(r,t) = 0 admits solutions labeled by the quasimo-
mentum k and quasienergy @, yy , (r,t) = e'*"= Ny (r.1),
where uy,,(r, t) has the same space-time translation sym-
metries as the ones in V(r,t). Similar to the situation
in a periodically driven crystal, k and @ are defined up to
adding reciprocal vectors of the form (G;,Q;) with
s;-G; —7,Q; =2r5;;, and thus should be restricted in
the first (energy-momentum) Brillouin zone (BZ).
Moreover, the momentum k and energy @ are not inde-
pendent and they must solve the following eigenvalue
equation:

EB + 1K)+ V(r.1) = i0|ug o (r. 1) = @upe o, (r 7). (1)

To find out the solution at (k,®), one can solve the
eigenvalues at each k in Eq. (1), and identify solutions that
are separated by multiple combinations of reciprocal
vectors (G;,€;) in energy-momentum space. This can
also be seen if we introduce i = /Gy,  (r, ), then
it solves the same type of eigenvalue equation with
substitution k — k — G;, » > w—L;, and thus we can
denote it = Uk—G, -0, Notice that equations similar to

Eq. (1) also exist when we simply have Floquet-Bloch
systems, in which momentum and energy are separately
identified upon addition of multiple reciprocal (to the
spatial dimensions) vectors and the driving frequency,
respectively. This similarity motivates us to think of band
topology in a space-time crystal.

Spectrum.—To generalize the concepts of (Floquet)
topological insulators and superconductors to the space-
time crystals, we have to focus on systems with an energy
gap in the spectrum. However, if there exist more than two
nonzero €;s in the reciprocal vectors (G;,Q;), the spec-
trum will be dense and thus gapless. To see this, one can
assume (k,w) is a solution, and Q,, €, are two nonzero
frequencies in the reciprocal vectors. It implies that all
states labeled by (k + nG, + mG,, w + nQ; + mQ,) with
n,m € Z are also solutions. Since ; and €, are incom-
mensurate (otherwise one can redefine reciprocal vectors to
make one of them zero), nQ; + m€, can be made
arbitrarily close to zero with |n|, |m| — oo, similar to the
situation in the quasiperiodically driven case considered
in Ref. [29].

Hence, in order to have a “gapped” space-time crystal,
we will focus on the particular situations where there only
exists one nonzero frequency. In this case, the space-time
discrete translation basis vectors can be parametrized as
(0,—T), and (s;,5,T) with g; € (-1.3], j=1.2,....D.
The corresponding reciprocal vectors in energy-momentum
space are (3P, f,G;, Q) with Q = 2z/T, and (G, 0) for
j=1,2,....D. This implies that the potential can be
written as

Vi) = S MOy ), ()

nez

where V,(r) =V,(r+s;) is spatially periodic in D
dimensions, for alln € Z and j = 1,2, ..., D. They satisfy
V,(r) = V_,(r) because of hermiticity.

Similarly, we can write

uk.w(r7 t) = Zein(zj/)’,-G,--r—Qt) un.k,w<r)7 (3)

nez

and one can show that the function u, 4 ,(r) satisfies

[hO (k + M(sk) - mQ] Um k.o (I‘)

+ zvn (r)um—n,k.w(r) = a)um.k,a)(r)’ (4)
n#0

where 6k =), ;G;, and hy(k) = &(p + k) + V(r) can
be interpreted as a Bloch Hamiltonian describing a particle
moving in the (spatially) periodic potential V(r). '

Let us denote the eigenstates of /iy (k) as u; at energy e,
(assuming j=1,2,...,d), and we can expand u,,, =
> ; cf;l,k_wu,{ mok- Thus, Eq. (4) can be converted into an
eigenvalue equation H(k)Cy, = @Cy,,, Where we intro-
duced the enlarged Hamiltonian in the frequency domain as

H(k)
| ho(k—8k)+Q hi(k—ok)  hi(k—ok)
= hy(ke=3k) — ho(k) i (k)
hy (k — k) hi(k)  ho(k+8k)—Q

(5)

Here, each diagonal block of d dimensions corresponds
to a particular frequency sector labeled by m. The
column vector Cy,, = (--"051,1(,(0’"g,k,w’clT,k.w’ ...)T con-
sists the expansion coefficients of the form ¢, , =
(cil,k.w,...,cﬁl‘k,w)T, for all m € Z. Here, the diagonal
blocks are diagonalized with ho(k) = diag(ej., ..., €f) since
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eigenstates’ basis is used. The off-diagonal blocks {4, (k) }
are in general nondiagonal and their matrix elements are
computed from [hn(k)]lj <uk+n5k|v |uk>

It is worth mentioning that H (k) looks very similar to the
enlarged Hamiltonian for the Floquet-Bloch problem in the
frequency domain formulation [30], except that the off-
diagonal blocks no longer couple different Floquet sectors
(indexed by m) at the same Bloch momentum k but rather
allow mixing of states from different Floquet sectors with
momentum differing in multiples of 6k. Thus, we expect
these couplings can produce topologically protected energy
gaps for space-time crystals.

Space-time crystals from crystals.—The space-time
crystals with gapped spectra can be realized from an
ordinary crystal (including cold atoms in optical lattices)
in equilibrium, described by the Hamiltonian H, =
E(P) + Vo(r), or simply the Bloch Hamiltonian (k). To
make the system a space-time crystal, one further generates a
traveling wave on the crystal lattices by applying, for
example, an acoustic wave (or modulating the optical
potential for cold atoms) at angular frequency € and wave
vector ok, which produces the term Y, ., e"*"= )V (r).

When the static crystal with Bloch Hamiltonian % (k) is
described by a tight-binding model (namely using Wannier
functions as a basis), the traveling wave potential generates
additional on-site and hopping terms that satisfy the space-
time translation symmetries. This can be seen by introduc-
ing the Wannier function |w | at site R with orbital index j
for the crystalline Hamiltonian H,. The hopping amplitude
between neighboring sites (or on-site term for R’ = R) is
given by the matrix elements

<WiR’|H|WjR> [ho

i+ > _[h"(R'.R.1)],;.

n#0

where [h°(R' — R)],; are the static hopping or on-site terms
that only depend on R’ — R. The time-dependent hopping
or on-site terms can be written in the following form [31]:

(1" (R'.R.1)];; = "R (R = R)];;. (6)

where 7" is some function depending only on R’ — R. Thus,
we see the time-dependent hopping or on-site terms are
invariant if we transform R’, R, and ¢ according to the
space-time translations.

As shown in the Supplemental Material [31], the
enlarged Hamiltonian introduced in Eq. (5) can also be
derived using the Wannier functions. The tight-binding
parameters [i"(R' — R)] ;j are related to H(k) through

k) = Ze—ik-Riln (R)
R

Topological classification.—The topological classifica-
tion of the space-time crystals now boils down to the

(n>0). (7)

classification of the enlarged Hamiltonian H(k) at a
particular energy gap, given a set of symmetries.

Let H(k) be in one of the Altland-Zirnbauer (AZ)
symmetry classes [1-5], which are determined by the
presence or absence of the time-reversal, particle-hole,

and chiral symmetries, defined according to ’ZA—H(k)’ZA' 1=
H(k.~k), CH(k)C™" = ~H(k, k), and SH(k)S™" =
—H(k), respectlvely Here, 7 and C are antiunitary oper-

ators, while S is unitary. Note that we also generalized the
definitions by allowing the time-reversal invariant momen-
tum to be different from zero and located at k.. In other
words, this means that under antilinear operation, the
momentum is reflected about k,/2 rather than zero.
Thus, the classification of topological states at a given
energy gap depends on the dimension of k and the AZ
symmetry class of H(k), as in the case of topological
insulators and superconductors. In principle, one can also
consider other spatial symmetries instead of on-site sym-
metries considered above, which will enrich the topological
classification.

We are particularly interested in the topologically pro-
tected boundary modes at @ = Q/2 mod Q with open
boundary conditions, which indicates a nontrivial out-of-
equilibrium topological state that has no analog in the
equilibrium scenario [32,33]. In terms of the enlarged
Hamiltonian, this often requires coupling between neigh-
boring diagonal sectors in H (k).

For simplicity, let us consider the harmonic driving
protocols when £, (k) vanishes for |n| > 2. Moreover, let
us assume that the driving term £, (k) is small and there are
energy overlaps only between neighboring Floquet sectors
along the diagonal in H(k), i.e., ho(k) =~ ho(k + 6k) — Q =~
—Q/2 for some k. With these assumptions, one can write
H(k) ~ Heir (k) — poQ2/2 for the low energy physics
around —Q/2, where p, is the two-by-two identity matrix.
The topological classification at the energy gap —Q/2 is
then determined by the effective Hamiltonian

i (k) ) Q

h (k)
hokron) T2t ®

Hess(k) =
eff ( ) < h1 ( k)
where we introduced the Pauli matrices p, , . corresponding
to the Floquet sectors.

1D model in class D.—It is known that 1D crystals in
class D with a particle-hole symmetry C*> =1 have Z,
topological invariants and can support Majorana boundary
modes. In fact, 1D space-time crystals in class D can also
be topological at quasienergy /2, where nontrivial boun-
dary modes exist. Such a model can be constructed using
the harmonic driving protocol described by the effective
Hamiltonian H;(k) in Eq. (8). Consider hy(k) =
—2wcos(ka) and hy(k) = Acos(ka + Ska/2), it is
obvious that we have a particle-hole symmetry realized
via p Hesr(k)p, = —Hege(mr — 6k — k)*. As shown in the
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Supplemental Material [31], this symmetry also exists for
the full H(k).

We first take ka = +x; then Hg (k) takes the familiar
form of the Hamiltonian for the Kitaev chain [34], a toy
model for the topological superconductor that hosts boun-
dary Majorana modes in an open chain for 4w 2 Q. On the
other hand, even if dka deviates from 4z, the particle-hole
symmetry persists, and thus the boundary modes should not
disappear as along as the bulk gap does not close.

Written in real space, the system is described by a one-
orbital tight-binding model along x direction with lattice
spacing a:

Hip =) {[-w+f(x0lyiwe, +He}  (9)

where we have in the hopping parameter a space-time
translation invariant modulation f(x,7) = Acos{8kx—Qt +
[(6ka)/2]}, which satisfies f(x,7) = f(x,t —27/Q) =
f(x+a,t+ 6ka/Q). The second-quantized operator v\
(y,) creates (annihilates) an electron on site x.

The numerical results for the band structure of the full
enlarged Hamiltonian (k) (truncated up to £N,.
Floquet sector) are shown in Figs. 2(a) and 2(b) for
dka/m =1 and 0.8, respectively. With an open boundary
condition, the system loses its space-time translation
symmetry and becomes a Floquet noncrystalline chain.
The spectra for such systems at different 6k are plotted in
Fig. 2(c), which shows that the Majorana boundary modes
at quasienergy /2 persist for a considerable range of dka
around z. In Fig. 2(d), the absolute value square of the
Majorana wave functions traced over all Floquet sectors are
plotted for 6ka/z = 0.8.

2D model in class A.—It is known that 2D crystals in
class A (no symmetries) have a Z topological invariant, the
Chern number. Let us now construct a model for nontrivial

(d)
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= 0.0 202
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“10 el 0.0
1 0 1 -1 0 1 075 100 125 —50 0 50
ka/m ka/m Ska/m Site index
FIG. 2. 1D space-time crystal in class D. (a), (b) show the band

structure of H(k) in black dashed lines for ska/z = 1 and 0.8,
respectively. The red, blue, and green solid lines correspond to the
diagonal i in different Floquet sectors. The yellow parallelo-
gram denotes the first energy-momentum BZ. (c) Floquet spectra
for an open chain at different dk. (d) Absolute value square of
Majorana wave functions traced over Floquet sectors at
Ska = 0.8z. The other parameters are w/Q = 0.4, A/Q = 0.3,
and N, = 8. The open chain contains 150 sites.

2D space-time crystals in class A, which has been
illustrated in Fig. 1. For example, one can take
ho(k)=2wlcos(k,a)+cos(kya)], and h; (k)= Alcos(k.a +
8k.a/2)+icos(kya+0dkya/2)]. Choosing oka = (z, ),
the resulting M (k) becomes the half-Bernevig-Hughes-
Zhang model [35], which can support chiral propagating
edge modes at the boundary. Now if one considers 6k away
from (7, ), as long as the bulk band gap does not close, the
system should be in the same topological phase.

In real space, this system can be described by the
following one-orbital tight-binding model on a square
lattice with lattice constant a, whose Hamiltonian can be
written as H = H, + H, where

Hy = WZ(W;{_HU@WR + V/ITH@WR +He) (10)
R

describes the static hopping between neighboring sites,
while the second term

Hy =AY [cos(dk - R — Qt + 5k, /2) (Wi, g + Hoc.)
R
x sin(8k - R — Q1 + 6k, /2) (W 5wk +He)]  (11)

corresponds to the time-dependent hopping with space-
time translation symmetries. Here, w' and y denote the
creation and annihilation operators.

In Fig. 3(a), we show a two-dimensional band structure
of H(k) at w/Q=0.3 and A/Q=0.2 at dka/n =
(0.9,0.9), which is expected to be gapped at energy
/2 mod Q. Assuming open boundary condition along
y and periodic boundary condition along x, we lost one of
the space-time translation symmetries and the enlarged
Hamiltonian will only depend on one of the Bloch
momentums, k.. Diagonalizing it at each k,, we see the

(@) (b)

1.0
'}\ @ & E/Q
1.0 0.5
A
R . 0.5 g 00
0.0 )

A" ~&k~ -0.5

-1.0

\1\ 1 -1.0
P 0T 0 - 01
Q7 kya,ﬁ kya/m
FIG. 3. 2D space-time crystal in class A. (a) Two-dimensional

band structure of H (k) for ska = (0.9z,0.97). (b) One-dimen-
sional band structure when periodic boundary condition is
assumed only along x. The chiral edge modes inside the bulk
gap at Q/2 are shown with red dotted lines. The energy-
momentum BZ is denoted as the yellow parallelogram. The
other parameters are w/Q = 0.3, A/Q = 0.2, and N,,, = 8. The
number of sites along y is 50 in (b).
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Gapless
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FIG. 4. Phase diagram of 2D space-time crystal in class A.
(a) Fixing w/Q = 0.3, A/Q = 0.2 while varying 6k, and &k, if
the system is gapped at quasienergy Q/2, the topological
invariant C is computed. (b) Obtained by fixing A/Q = 0.2
while varying w and 6k = ok, = dk,.

subgap chiral modes around /2 in Fig. 3(b), as expected.
In the Supplemental Material [31], we show that these
chiral modes are stable against weak disorder, which is
similar to the situation in strong topological insulators.
In Fig. 4(a), the phase diagram as a function of 5k, and
ok, at fixed w/Q = 0.3 and A/Q = 0.2 is shown. Apart
from a large gapless region, the quasienergy spectrum is
found to be gapped at Q/2 (mod ), at which the
topological invariant C can be computed by summing over
the Chern numbers of all bands below the gap. Note that Cs
computed from the enlarged Hamiltonian H (k) at every
gapped energy Q/2 + n€, with n € Z, are all identical due
to the fact that the spectrum is shifted downward by Q if
one performs k — k 4 6k. Numerically, with a finite
truncation parameter N, this means a nonzero Chern
number can only be carried by the top and bottommost
bands. In Fig. 4(b), the phase diagram as a function of w
and ok = ok, = 6k, at fixed A/Q = 0.2 is shown.
Conclusion.—In this Letter, we extend the noninteract-
ing topological phases to the scenario of space-time
crystals, which are nonequilibrium quantum systems
beyond the Floquet paradigm. Particularly, we focused
on only a subset of space-time translation symmetries such
that the bulk quasienergy spectrum can be gapped. We
introduced the enlarged Hamiltonian, similar to the one
used in the Floquet case, for the space-time crystal. Thus,
the topological classification of the space-time crystal
becomes the classification of the enlarged Hamiltonian, a
static Bloch-like Hamiltonian. We showed that such space-
time crystals can be engineered from conventional crystals
with an additional time-dependent drive that behaves like a
traveling wave moving across the crystal. We further
construct tight-binding models of topological space-time
crystals in 1D and 2D to illustrate the general principle.
The topological space-time crystals that support boun-
dary modes at quasienergy €2/2 mod Q are intrinsic non-
equilibrium topological phases as they have no static
analog. More interestingly, the topological nontrivial sys-
tems can even be realized in one-orbital tight-binding
models, whereas this is impossible for both static and

Floquet noninteracting topological phases in which at least
two orbitals are required. This would in some sense make
topological space-time crystals experimentally even more
accessible with a reduced degrees of freedom.

Finally, it is worth mentioning that there are a few
directions in which to generalize the results of this work.
Although the construction of models in other AZ symmetry
classes is straightforward, at least in the case of harmonic
driving protocols as we can use the simple effective two-by-
two Hamiltonian in Eq. (8), the classification with addi-
tional not on-site space-time symmetries from a space-time
group [25] will require additional work. Another direction
is to remove the restriction to the space-time translation
symmetries considered in this work, and this will allow for
dense quasienergy spectrum, as in a time-quasiperiodic
system [29]. Furthermore, here we only considered non-
interacting space-time crystals. The exploration of topo-
logical phases that are stable in the presence of electron
interactions will be left for future work. On the practical
side, it is important to have experimentally feasible ways to
detect the boundary modes in topological space-time
crystals. One possibility would rely on tunneling into the
sample boundary at bias voltage at /2, as proposed for the
Floquet-Bloch systems [28,36]. Particularly, the tunneling
conductance at the edge will be nonzero due to the spectral
weight of the topological modes [37], whereas it is
vanishing when the tunneling happens inside the bulk.
We numerically calculate this spectral weight for the 1D
and 2D models in the Supplemental Material [31].
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